Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe

Physik

Inhalt

		Seite
1	Die Fachgruppe Physik im Stadtgymnasium Köln-Porz	3
2	Entscheidungen zum Unterricht	5
2.1	Unterrichtsvorhaben	5
2.1.1	Übersichtsraster Unterrichtsvorhaben	7
2.1.2	Konkretisierte Unterrichtsvorhaben	14
2.1.2.1	Einführungsphase	14
2.1.2.2	Qualifikationsphase: Grundkurs	22
2.1.2.3	Qualifikationsphase: Leistungskurs	39
2.2 2.3 2.4	Grundsätze der fachmethodischen und fachdidaktischen Arbeit im Physikunterricht der gymnasialen Oberstufe Grundsätze der Leistungsbewertung und Leistungsrückmeldung Lehr- und Lernmittel	75 77 81
3	Entscheidungen zu fach- und unterrichtsübergreifenden Fragen	82
4	Qualitätssicherung und Evaluation	84

1 Die Fachgruppe Physik im Stadtgymnasium Köln-Porz

Hinweis: Um die Ausgangsbedingungen für die Erstellung des schulinternen Lehrplans festzuhalten, können beispielsweise folgende Aspekte berücksichtigt werden:

- Lage der Schule
- Aufgaben des Fachs bzw. der Fachgruppe
- Funktionen und Aufgaben der Fachgruppe vor dem Hintergrund des Schulprogramms
- Beitrag der Fachgruppe zur Erreichung der Erziehungsziele ihrer Schule
- Beitrag zur Qualitätssicherung und –entwicklung innerhalb der Fachgruppe
- Zusammenarbeit mit andere(n) Fachgruppen (fächerübergreifende Unterrichtsvorhaben und Projekte)
- Ressourcen der Schule (personell, räumlich, sächlich), Größe der Lerngruppen, Unterrichtstaktung, Stundenverortung
- Fachziele
- Name des/der Fachvorsitzenden und des Stellvertreters/der Stellvertreterin
- ggf. Arbeitsgruppen bzw. weitere Beauftragte

Das Stadtgymnasium befindet sich in einer Großstadt des Rheinlands. Zurzeit 90 Lehrerinnen und Lehrer unterrichten etwa 1100 Schülerinnen und Schüler, die vorwiegend aus den den Schulstandort umgebenden Stadtteilen stammen. Insgesamt ist die Schülerschaft in seiner Zusammensetzung eher heterogen.

Auch mit Blick auf diese Zusammensetzung besteht ein wesentliches Leitziel der Schule in der individuellen Förderung. Die Fachgruppe Physik versucht in besonderem Maße, jeden Lernenden in seiner Kompetenzentwicklung möglichst weit zu bringen. Außerdem wird angestrebt, Interesse an einem naturwissenschaftlich geprägten Studium oder Beruf zu wecken. In diesem Rahmen sollen u.a. Schülerinnen und Schüler mit besonderen Stärken im Bereich Physik unterstützt werden. Dieses drückt sich z.B. in einem jährlichen Physikwettbewerb aus, an dem alle Physikkurse der EF und auch Schüler anderer Jahrgangsstufen teilnehmen. In enger Kooperation mit der Universität ermöglichen wir besonders begabten Lernenden die Teilnahme an Seminaren. Hier können sie sogar schon Leistungsnachweise erwerben, die ihnen in einem späteren Studium anerkannt werden.

Der Unterricht wird – soweit möglich – auf der Stufenebene parallelisiert. Auch in der Oberstufe ist der Austausch zu Inhalten, methodischen Herangehensweisen und zu fachdidaktischen Problemen intensiv. Insbesondere in Doppelstunden können Experimente in einer einzigen Unterrichtsphase gründlich vorbereitet und ausgewertet werden.

Die Ausstattung mit experimentiergeeigneten Fachräumen und mit Materialien ist zufriedenstellend. Der Etat für Neuanschaffungen und Reparaturen ist nicht üppig, aber gerade ausreichend. Schrittweise sollen mehr Möglichkeiten für Schülerversuche an geeigneten Stellen geschaffen werden. Darüber hinaus setzen wir Schwerpunkte in der Nutzung von neuen Medien, wozu regelmäßig kollegiumsinterne Fortbildungen angeboten werden. Im Fach Physik gehört dazu auch die Erfassung von Daten und Messwerten mit modernen digitalen Medien. An der Schule existieren zwei Computerräume, die nach Reservierung auch von Physikkursen für bestimmte Unterrichtsprojekte genutzt werden können.

In der Oberstufe sind durchschnittlich ca. 140 Schülerinnen und Schüler pro Stufe. Das Fach Physik ist in der Regel in der Einführungsphase mit zwei Grundkursen, in der Qualifikationsphase je Jahrgangsstufe mit zwei Grundkursen vetreten. Die Lehrerbesetzung in Physik ermöglicht einen ordnungsgemäßen Fachunterricht in der Sekundarstufe I, auch die Kursangebote in der Oberstufe sind gesichert.

2 Entscheidungen zum Unterricht

Hinweis: Die nachfolgend dargestellte Umsetzung der verbindlichen Kompetenzerwartungen des Kernlehrplans findet auf zwei Ebenen statt. Das Übersichtsraster gibt den Lehrkräften einen raschen Überblick über die laut Fachkonferenz verbindlichen Unterrichtsvorhaben pro Schuljahr. In dem Raster sind, außer dem Thema des jeweiligen Vorhabens, das schwerpunktmäßig damit verknüpfte Inhaltsfeld bzw. die Inhaltsfelder, inhaltliche Schwerpunkte des Vorhabens sowie Schwerpunktkompetenzen ausgewiesen. Die Konkretisierung von Unterrichtsvorhaben führt weitere Kompetenzerwartungen auf und verdeutlicht vorhabenbezogene Absprachen, z.B. zur Festlegung auf einen Aufgabentyp bei der Lernerfolgsüberprüfung durch eine Klausur.

2.1 Unterrichtsvorhaben

Die Darstellung der Unterrichtsvorhaben im schulinternen Lehrplan besitzt den Anspruch, <u>sämtliche</u> im Kernlehrplan angeführten Kompetenzen . Dies entspricht der Verpflichtung jeder Lehrkraft, Lerngelegenheiten für ihre Lerngruppe so anzulegen, dass <u>alle</u> Kompetenzerwartungen des Kernlehrplans von den Schülerinnen und Schülern erworben werden können.

Die entsprechende Umsetzung erfolgt auf zwei Ebenen: der Übersichtsund der Konkretisierungsebene.

Im "Übersichtsraster Unterrichtsvorhaben" (Kapitel 2.1.1) wird die für alle Lehrerinnen und Lehrer gemäß Fachkonferenzbeschluss verbindliche Verteilung der Unterrichtsvorhaben dargestellt. Das Übersichtsraster dient dazu, den Kolleginnen und Kollegen einen schnellen Überblick über die Zuordnung der Unterrichtsvorhaben zu den einzelnen Jahrgangsstufen sowie den im Kernlehrplan genannten Kompetenzen, Inhaltsfeldern und inhaltlichen Schwerpunkten sowie in der Fachkonferenz verabredeten verbindlichen Kontexten zu verschaffen. Um Klarheit für die Lehrkräfte herzustellen und die Übersichtlichkeit zu gewährleisten, werden in der Kategorie "Kompetenzen" an dieser Stelle nur die übergeordneten Kompetenzerwartungen ausgewiesen, während die konkretisierten konkretisierter Kompetenzerwartungen erst auf der Ebene Unterrichtsvorhaben Berücksichtigung finden. Der ausgewiesene Zeitbedarf versteht sich als grobe Orientierungsgröße, die nach Bedarf über- oder unterschritten werden kann. Um Spielraum für Vertiefungen, besondere Schülerinteressen, aktuelle Themen bzw. die Erfordernisse anderer besonderer Ereignisse (z.B. Praktika, Kursfahrten o.ä.) zu

erhalten, wurden im Rahmen dieses schulinternen Lehrplans ca. 75 Prozent der Bruttounterrichtszeit verplant.

"Übersichtsraster Während der Fachkonferenzbeschluss zum Unterrichtsvorhaben" einschließlich der dort genannten Kontexte zur Gewährleistung vergleichbarer Standards sowie zur Absicherung von Lerngruppenübertritten und Lehrkraftwechseln für alle Mitglieder der Fachkonferenz Bindekraft entfalten soll, besitzt die exemplarische Ausweisuna "konkretisierter Unterrichtsvorhaben" (Kapitel Tabellenspalten 3 und 4) empfehlenden Charakter, es sei denn, die Verbindlichkeit bestimmter Aspekte ist dort, markiert durch Fettdruck, explizit angegeben. Insbesondere Referendarinnen und Referendaren sowie neuen Kolleginnen und Kollegen dienen die konkretisierten Unterrichtsvorhaben vor allem zur standardbezogenen Orientierung in der neuen Schule, aber auch zur Verdeutlichung von unterrichtsbezogenen fachgruppeninternen Absprachen zu didaktisch-methodischen Zugängen, fächerübergreifenden Kooperationen, Lernmitteln und -orten sowie vorgesehenen Leistungsüberprüfungen, die im Einzelnen auch den Kapiteln 2.2 bis 2.4 zu entnehmen sind. Abweichungen von den empfohlenen Vorgehensweisen bezüglich konkretisierten der Unterrichtsvorhaben sind im Rahmen der pädagogischen Freiheit der Lehrkräfte jederzeit möglich. Sicherzustellen bleibt allerdings auch hier, dass im Rahmen der Umsetzung der Unterrichtsvorhaben insgesamt alle Kompetenzerwartungen des Kernlehrplans Berücksichtigung finden.

2.1.1 Übersichtsraster Unterrichtsvorhaben

Unterrichtsvorhaben der Einführungsphase			
Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte	Kompetenzschwerpunkte	
Physik und Sport	Mechanik	E7 Arbeits- und Denkweisen	
Wie lassen sich Bewegungen vermessen und	Kräfte und Bewegungen	K4 Argumentation	
analysieren?	Energie und Impuls	E5 Auswertung	
Zeitbedarf: 42 Ustd.		E6 Modelle	
		UF2 Auswahl	
Auf dem Weg in den Weltraum	Mechanik	UF4 Vernetzung	
Wie kommt man zu physikalischen	Gravitation	E3 Hypothesen	
Erkenntnissen über unser Sonnensystem?	Kräfte und Bewegungen	E6 Modelle	
Zeitbedarf: 28 Ustd.	Energie und Impuls	E7 Arbeits- und Denkweisen	
Schall	Mechanik	E2 Wahrnehmung und Messung	
Wie lässt sich Schall physikalisch untersuchen?	Schwingungen und Wellen	UF1 Wiedergabe	
Zeitbedarf: 10 Ustd.	Kräfte und Bewegungen	K1 Dokumentation	
	Energie und Impuls		
Summe Einführungsphase: 80 Stunden			

Unterrichtsvorhaben der Qualifikationsphase (Q1) – GRUNDKURS			
Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte	Kompetenzschwerpunkte	
Erforschung des Photons	Quantenobjekte	E2 Wahrnehmung und Messung	
Wie kann das Verhalten von Licht beschrieben	Photon (Wellenaspekt)	E5 Auswertung	
und erklärt werden?	, ,	K3 Präsentation	
Zeitbedarf: 14 Ustd.			
Erforschung des Elektrons	Quantenobjekte	UF1 Wiedergabe	
Wie können physikalische Eigenschaften wie die	Elektron (Teilchenaspekt)	UF3 Systematisierung	
Ladung und die Masse eines Elektrons		E5 Auswertung	
gemessen werden?		E6 Modelle	
Zeitbedarf: 15 Ustd.			
Photonen und Elektronen als Quantenobjekte	Quantenobjekte	E6 Modelle	
Kann das Verhalten von Elektronen und	Elektron und Photon (Teilchenaspekt,	E7 Arbeits- und Denkweisen	
Photonen durch ein gemeinsames Modell	Wellenaspekt)	K4 Argumentation	
beschrieben werden?	Quantenobjekte und ihre Eigenschaften	B4 Möglichkeiten und Grenzen	
Zeitbedarf: 5 Ustd.	,		
Energieversorgung und Transport mit	Elektrodynamik	UF2 Auswahl	
Generatoren und Transformatoren	Spannung und elektrische Energie	UF4 Vernetzung	
Wie kann elektrische Energie gewonnen, verteilt	Induktion	E2 Wahrnehmung und Messung	
und bereitgestellt werden?	Spannungswandlung	E5 Auswertung	
Zeitbedarf: 18 Ustd.		E6 Modelle	
		K3 Präsentation	
		B1 Kriterien	
Wirbelströme im Alltag	Elektrodynamik	UF4 Vernetzung	
Wie kann man Wirbelströme technisch nutzen?	Induktion	E5 Auswertung	
Zeitbedarf: 4 Ustd.		B1 Kriterien	
Summe Qualifikationsphase (Q1) – GRUNDKURS: 56 Stunden			

Unterrichtsvorhaben der Qualifikationsphase (Q2) – GRUNDKURS			
Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte	Kompetenzschwerpunkte	
Erforschung des Mikro- und Makrokosmos	Strahlung und Materie	UF1 Wiedergabe	
Wie gewinnt man Informationen zum Aufbau der	Energiequantelung der Atomhülle	E5 Auswertung	
Materie?	Spektrum der elektromagnetischen Strahlung	E2 Wahrnehmung und Messung	
Zeitbedarf: 13 Ustd.			
Mensch und Strahlung	Strahlung und Materie	UF1 Wiedergabe	
Wie wirkt Strahlung auf den Menschen?	Kernumwandlungen	B3 Werte und Normen	
Zeitbedarf: 9 Ustd.	Ionisierende Strahlung	B4 Möglichkeiten und Grenzen	
	Spektrum der elektromagnetischen Strahlung		
Forschung am CERN und DESY	Strahlung und Materie	UF3 Systematisierung	
Was sind die kleinsten Bausteine der Materie?	Standardmodell der Elementarteilchen	E6 Modelle	
Zeitbedarf: 6 Ustd.			
Navigationssysteme	Relativität von Raum und Zeit	UF1 Wiedergabe	
Welchen Einfluss hat Bewegung auf den Ablauf	Konstanz der Lichtgeschwindigkeit	E6 Modelle	
der Zeit?	Zeitdilatation		
Zeitbedarf: 5 Ustd.			
Teilchenbeschleuniger	Relativität von Raum und Zeit	UF4 Vernetzung	
Ist die Masse bewegter Teilchen konstant?	Veränderlichkeit der Masse	B1 Kriterien	
Zeitbedarf: 6 Ustd.	Energie-Masse Äquivalenz		
Das heutige Weltbild	Relativität von Raum und Zeit	E7 Arbeits- und Denkweisen	
Welchen Beitrag liefert die Relativitätstheorie zur	Konstanz der Lichtgeschwindigkeit	K3 Präsentation	
Erklärung unserer Welt?	Zeitdilatation		
Zeitbedarf: 2 Ustd.	Veränderlichkeit der Masse		
	Energie-Masse Äquivalenz		
Summe Qualifikationsphase (Q2) – GRUNDKURS		1	

Unterrichtsvorhaben der Qualifikationsphase (Q1) – LEISTUNGSKURS				
Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte	Kompetenzschwerpunkte		
Satellitennavigation – Zeitmessung ist nicht	Relativitätstheorie	UF2 Auswahl		
absolut	Konstanz der Lichtgeschwindigkeit	E6 Modelle		
Welchen Einfluss hat Bewegung auf den Ablauf	Problem der Gleichzeitigkeit			
der Zeit?				
Zeitbedarf: 4 Ustd.				
Höhenstrahlung	Relativitätstheorie	E5 Auswertung		
Warum erreichen Myonen aus der oberen	 Zeitdilatation und Längenkontraktion 	K3 Präsentation		
Atmosphäre die Erdoberfläche?				
Zeitbedarf: 4 Ustd.				
Teilchenbeschleuniger - Warum Teilchen aus	Relativitätstheorie	UF4 Vernetzung		
dem Takt geraten	Relativistische Massenzunahme	B1 Kriterien		
Ist die Masse bewegter Teilchen konstant?	Energie-Masse-Beziehung			
Zeitbedarf: 8 Ustd.				
Satellitennavigation – Zeitmessung unter dem	Relativitätstheorie	K3 Präsentation		
Einfluss von Geschwindigkeit und Gravitation	Der Einfluss der Gravitation auf die			
Beeinflusst Gravitation den Ablauf der Zeit?	Zeitmessung			
Zeitbedarf: 4 Ustd.		DAME HALLS		
Das heutige Weltbild	Relativitätstheorie	B4 Möglichkeiten und Grenzen		
Welchen Beitrag liefert die Relativitätstheorie zur	Konstanz der Lichtgeschwindigkeit			
Erklärung unserer Welt?	Problem der Gleichzeitigkeit			
Zeitbedarf: 4 Ustd.	Zeitdilatation und Längenkontraktion			
	Relativistische Massenzunahme			
	Energie-Masse-Beziehung			
	Der Einfluss der Gravitation auf die			
	Zeitmessung			

Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte	Kompetenzschwerpunkte	
Untersuchung von Elektronen	Elektrik	UF1 Wiedergabe	
Wie können physikalische Eigenschaften wie die	Eigenschaften elektrischer Ladungen und ihrer	UF2 Auswahl	
Ladung und die Masse eines Elektrons	Felder	E6 Modelle	
gemessen werden?	Bewegung von Ladungsträgern in elektrischen	K3 Präsentation	
Zeitbedarf: 24 Ustd.	und magnetischen Feldern	B1 Kriterien	
		B4 Möglichkeiten und Grenzen	
Aufbau und Funktionsweise wichtiger Versuchs-	Elektrik	UF2 Auswahl	
und Messapparaturen	Eigenschaften elektrischer Ladungen und ihrer	UF4 Vernetzung	
Wie und warum werden physikalische Größen	Felder	E1 Probleme und Fragestellungen	
meistens elektrisch erfasst und wie werden sie	Bewegung von Ladungsträgern in elektrischen	E5 Auswertung	
verarbeitet?	und magnetischen Feldern	E6 Modelle	
Zeitbedarf: 22 Ustd.		K3 Präsentation	
		B1 Kriterien	
		B4 Möglichkeiten und Grenzen	
Erzeugung, Verteilung und Bereitstellung	Elektrik	UF2 Auswahl	
elektrischer Energie	Elektromagnetische Induktion	E6 Modelle	
Wie kann elektrische Energie gewonnen, verteilt	-	B4 Möglichkeiten und Grenzen	
und bereitgestellt werden?			
Zeitbedarf: 22 Ustd.			
Physikalische Grundlagen der drahtlosen	Elektrik	UF1 Wiedergabe	
Nachrichtenübermittlung	Elektromagnetische Schwingungen und Wellen	UF2 Auswahl	
Wie können Nachrichten ohne Materietransport		E4 Untersuchungen und Experimente	
übermittelt werden?		E5 Auswertung	
Zeitbedarf: 28 Ustd.		E6 Modelle	
		K3 Präsentation	
		B1 Kriterien	
		B4 Möglichkeiten und Grenzen	
Summe Qualifikationsphase (Q1) – LEISTUNGSKURS: 120 Stunden			

Unterrichtsvorhaben der Qualifikationsphase (Q2) – LEISTUNGSKURS				
Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte	Kompetenzschwerpunkte		
Erforschung des Photons	Quantenphysik	UF2 Auswahl		
Besteht Licht doch aus Teilchen?	 Licht und Elektronen als Quantenobjekte 	E6 Modelle		
Zeitbedarf: 10 Ustd.	Welle-Teilchen-Dualismus	E7 Arbeits- und Denkweisen		
	Quantenphysik und klassische Physik			
Röntgenstrahlung, Erforschung des Photons	Quantenphysik	UF1 Wiedergabe		
Was ist Röntgenstrahlung?	 Licht und Elektronen als Quantenobjekte 	E6 Modelle		
Zeitbedarf: 9 Ustd.				
Erforschung des Elektrons	Quantenphysik	UF1 Wiedergabe		
Kann das Verhalten von Elektronen und	Welle-Teilchen-Dualismus	K3 Präsentation		
Photonen durch ein gemeinsames Modell				
beschrieben werden?				
Zeitbedarf: 6 Ustd.				
Die Welt kleinster Dimensionen – Mikroobjekte	Quantenphysik	UF1 Wiedergabe		
und Quantentheorie	Welle-Teilchen-Dualismus und	E7 Arbeits- und Denkweisen		
Was ist anders im Mikrokosmos?	Wahrscheinlichkeitsinterpretation			
Zeitbedarf: 10 Ustd.	 Quantenphysik und klassische Physik 			

Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte	Kompetenzschwerpunkte		
Geschichte der Atommodelle, Lichtquellen und	Atom-, Kern- und Elementarteilchenphysik	UF1 Wiedergabe		
ihr Licht	Atomaufbau	E5 Auswertung		
Wie gewinnt man Informationen zum Aufbau der		E7 Arbeits- und Denkweisen		
Materie?				
Zeitbedarf: 10 Ustd.				
Physik in der Medizin (Bildgebende Verfahren,	Atom-, Kern- und Elementarteilchenphysik	UF3 Systematisierung		
Radiologie)	Ionisierende Strahlung	E6 Modelle		
Wie nutzt man Strahlung in der Medizin?	Radioaktiver Zerfall	UF4 Vernetzung		
Zeitbedarf: 14 Ustd.				
(Erdgeschichtliche) Altersbestimmungen	Atom-, Kern- und Elementarteilchenphysik	UF2 Auswahl		
Wie funktioniert die ¹⁴ C-Methode?	Radioaktiver Zerfall	E5 Auswertung		
Zeitbedarf: 10 Ustd.				
Energiegewinnung durch nukleare Prozesse	Atom-, Kern- und Elementarteilchenphysik	B1 Kriterien		
Wie funktioniert ein Kernkraftwerk?	Kernspaltung und Kernfusion	UF4 Vernetzung		
Zeitbedarf: 9 Ustd.	Ionisierende Strahlung			
Forschung am CERN und DESY –	Atom-, Kern- und Elementarteilchenphysik	UF3 Systematisierung		
Elementarteilchen und ihre fundamentalen	Elementarteilchen und ihre Wechselwirkungen	K2 Recherche		
Wechselwirkungen				
Was sind die kleinsten Bausteine der Materie?				
Zeitbedarf: 11 Ustd.				
Summe Qualifikationsphase (Q2) – LEISTUNGSKURS: 89 Stunden				

2.1.2 Konkretisierte Unterrichtsvorhaben

2.1.2.1 Einführungsphase

Inhaltsfeld: Mechanik

Kontext: Physik und Sport

Leitfrage: Wie lassen sich Bewegungen vermessen, analysieren und optimieren?

Inhaltliche Schwerpunkte: Kräfte und Bewegungen, Energie und Impuls

Kompetenzschwerpunkte: Schülerinnen und Schüler können ...

(E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen

(K4) physikalische Aussagen und Behauptungen mit sachlich fundierten und überzeugenden Argumenten begründen bzw. kritisieren.

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

(UF2)zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Beschreibung von Bewegungen im Alltag und im Sport	stellen Änderungen in den Vorstellungen zu Bewegungen und zum Sonnensystem beim Übergang vom Mittelalter zur Neuzeit dar (UF3, E7), entnehmen Kernaussagen zu naturwissenschaftlichen Positionen zu Beginn der Neuzeit aus einfachen historischen Texten (K2, K4).	Textauszüge aus Galileis <i>Discorsi</i> zur Mechanik und zu den Fallgesetzen	Einstieg über faire Beurteilung sportlicher Leistungen (Weitsprung in West bzw. Ostrichtung, Speerwurf usw., Konsequenzen aus der Ansicht einer ruhenden oder einer bewegten Erde) Analyse alltäglicher Bewegungsabläufe, Analyse von Kraftwirkungen auf reibungsfreie Körper
Aristoteles vs. Galilei (2 Ustd.)		Handexperimente zur qualitativen Beobachtung von Fallbewegungen (z. B. Stahlkugel, glattes bzw. zur Kugel zusammengedrücktes Papier, evakuiertes Fallrohr mit Feder und Metallstück)	Vorstellungen zur Trägheit und zur Fallbewegung, Diskussion von Alltagsvorstellungen und physikalischen Konzepten Vergleich der Vorstellungen von Aristoteles und Galilei zur Bewegung, Folgerungen für Vergleichbarkeit von sportlichen Leistungen.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar/didaktische Hinweise
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Beschreibung und Analyse von linearen Bewegungen (16 Ustd.)	unterscheiden gleichförmige und gleichmäßig beschleunigte Bewegungen und erklären zugrundeliegende Ursachen (UF2), vereinfachen komplexe Bewegungs- und Gleichgewichtszustände durch Komponentenzerlegung	Digitale Videoanalyse (z.B. mit VIANA, Tracker) von Bewegungen im Sport (Fahrradfahrt o. anderes Fahrzeug, Sprint, Flug von Bällen)	Einführung in die Verwendung von digitaler Videoanalyse (Auswertung von Videosequenzen, Darstellung der Messdaten in Tabellen und Diagrammen mithilfe einer Software zur Tabellenkalkulation)
	bzw. Vektoraddition (E1), planen selbstständig Experimente zur quantitativen und qualitativen Untersuchung einfacher Zusammenhänge		Unterscheidung von gleichförmigen und (beliebig) beschleunigten Bewegungen (insb. auch die gleichmäßig beschleunigte Bewegung)
	(u.a. zur Analyse von Bewegungen), führen sie durch, werten sie aus und bewerten Ergebnisse und Arbeitsprozesse (E2, E5, B1),		Erarbeitung der Bewegungsgesetze der gleichförmigen Bewegung
	stellen Daten in Tabellen und sinnvoll skalierten Diagrammen (u. a. <i>t-s</i> - und <i>t-v-</i> Diagramme,	Luftkissenfahrbahn mit digitaler Messwerterfassung:	Untersuchung gleichmäßig beschleunigter Bewegungen im Labor
	Vektordiagramme) von Hand und mit digitalen Werkzeugen angemessen präzise dar (K1, K3), erschließen und überprüfen mit Messdaten und Diagrammen funktionale Beziehungen zwischen mechanischen Größen (E5), bestimmen mechanische Größen mit mathematischen Verfahren und mithilfe digitaler Werkzeuge (u.a. Tabellenkalkulation, GTR) (E6),	Messreihe zur gleichmäßig beschleunigten Bewegung	Erarbeitung der Bewegungsgesetze der gleichmäßig beschleunigten Bewegung
			Erstellung von t-s- und t-v-Diagrammen (auch mithilfe digitaler Hilfsmittel), die Interpretation und Auswertung derartiger Diagramme sollte intensiv geübt werden.
		Freier Fall und Bewegung auf einer schiefen Ebene	Planung von Experimenten durch die Schüler (Auswertung mithilfe der Videoanalyse)
		eller schleren Ebene	Schlussfolgerungen bezüglich des Einflusses der Körpermasse bei Fallvorgängen, auch die Argumentation von Galilei ist besonders gut geeignet, um Argumentationsmuster in Physik explizit zu besprechen
		Wurfbewegungen Basketball, Korbwurf, Abstoß beim Fußball, günstigster Winkel	Wesentlich: Erarbeitung des Superpositionsprinzips (Komponentenzerlegung und Addition vektorieller Größen)
		i dissail, garistigster vviller	Herleitung der Gleichung für die Bahnkurve nur optional

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Newton'sche Gesetze, Kräfte und Bewegung (12 Ustd.)	berechnen mithilfe des Newton'schen Kraftgesetzes Wirkungen einzelner oder mehrerer Kräfte auf Bewegungszustände und sagen sie unter dem Aspekt der Kausalität vorher (E6), entscheiden begründet, welche Größen bei der Analyse von Bewegungen zu berücksichtigen oder zu vernachlässigen sind (E1, E4), reflektieren Regeln des Experimentierens in der Planung und Auswertung von Versuchen (u. a. Zielorientierung, Sicherheit, Variablenkontrolle, Kontrolle von Störungen und Fehlerquellen) (E2, E4), geben Kriterien (u.a. Objektivität, Reproduzierbarkeit, Widerspruchsfreiheit, Überprüfbarkeit) an, um die Zuverlässigkeit von Messergebnissen und physikalischen Aussagen zu beurteilen, und nutzen diese bei der Bewertung von eigenen und fremden Untersuchungen (B1),	Luftkissenfahrbahn mit digitaler Messwerterfassung: Messung der Beschleunigung eines Körpers in Abhängigkeit von der beschleunigenden Kraft Protokolle: Funktionen und Anforderungen	Kennzeichen von Laborexperimenten im Vergleich zu natürlichen Vorgängen besprechen, Ausschalten bzw. Kontrolle bzw. Vernachlässigen von Störungen Erarbeitung des Newton'schen Bewegungsgesetzes Definition der Kraft als Erweiterung des Kraftbegriffs aus der Sekundarstufe I. Berechnung von Kräften und Beschleunigungen beim Kugelstoßen, bei Ballsportarten, Einfluss von Reibungskräften

Inhalt	Kompetenzen	Experiment / Medium	Kommentar/didaktische Hinweise
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Energie und Leistung	erläutern die Größen Position, Strecke, Geschwindigkeit, Beschleunigung, Masse, Kraft, Arbeit,	Einsatz des GTR zur Bestimmung des Integrals	Begriffe der Arbeit und der Energie aus der SI aufgreifen und wiederholen
Impuls (12 Ustd.)	Energie, Impuls und ihre Beziehungen zueinander an unterschiedlichen Beispielen (UF2, UF4),	Fadenpendel (Schaukel)	Deduktive Herleitung der Formeln für die mechanischen Energiearten aus den
(12 Osta.)	analysieren in verschiedenen Kontexten Bewegungen qualitativ und quantitativ sowohl aus einer	Sportvideos	Newton'schen Gesetzen und der Definition der Arbeit
	Wechselwirkungsperspektive als auch aus einer energetischen Sicht (E1, UF1),		Energieerhaltung an Beispielen (Pendel, Achterbahn, Halfpipe) erarbeiten und für
	verwenden Erhaltungssätze (Energie- und Impulsbilanzen), um Bewegungszustände zu erklären sowie Bewegungsgrößen zu berechnen (E3, E6),		Berechnungen nutzen
			Energetische Analysen in verschiedenen Sportarten (Hochsprung, Turmspringen, Turnen,
	beschreiben eindimensionale Stoßvorgänge mit		Stabhochsprung, Bobfahren, Skisprung)
	Wechselwirkungen und Impulsänderungen (UF1), begründen argumentativ Sachaussagen, Behauptungen		Begriff des Impulses und Impuls als
	und Vermutungen zu mechanischen Vorgängen und	Luftkissenfahrbahn mit digitaler	Erhaltungsgröße Elastischer und inelastischer Stoß auch an
	ziehen dabei erarbeitetes Wissen sowie	Messwerterfassung:	anschaulichen Beispielen aus dem Sport (z.B.
	Messergebnisse oder andere objektive Daten heran (K4),	Messreihen zu elastischen und unelastischen Stößen	Impulserhaltung bei Ballsportarten, Kopfball beim Fußball, Kampfsport)
	bewerten begründet die Darstellung bekannter mechanischer und anderer physikalischer Phänomene in verschiedenen Medien (Printmedien, Filme, Internet) bezüglich ihrer Relevanz und Richtigkeit (K2, K4),		Hinweis: Erweiterung des Impulsbegriffs am Ende des Kontextes "Auf dem Weg in den Weltraum"
42 Ustd.	Summe		

Kontext: Auf dem Weg in den Weltraum

Leitfrage: Wie kommt man zu physikalischen Erkenntnissen über unser Sonnensystem? Inhaltliche Schwerpunkte: Gravitation, Kräfte und Bewegungen, Energie und Impuls

Kompetenzschwerpunkte: Schülerinnen und Schüler können

- (UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.
- (E3) mit Bezug auf Theorien, Modelle und Gesetzmäßigkeiten auf deduktive Weise Hypothesen generieren sowie Verfahren zu ihrer Überprüfung ableiten,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar/didaktische Hinweise
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Aristotelisches Weltbild, Kopernikanische Wende (3 Ustd.)	stellen Änderungen in den Vorstellungen zu Bewegungen und zum Sonnensystem beim Übergang vom Mittelalter zur Neuzeit dar (UF3, E7),	Arbeit mit dem Lehrbuch: Geozentrisches und heliozentrisches Planetenmodell	Einstieg über Film zur Entwicklung des Raketenbaus und der Weltraumfahrt Besuch in einer Sternwarte, Planetarium Bochum Beobachtungen am Himmel Historie: Verschiedene Möglichkeiten der Interpretation der Beobachtungen
Planetenbewegunge n und Kepler'sche Gesetze (5 Ustd.)	ermitteln mithilfe der Kepler´schen Gesetze und des Gravitationsgesetzes astronomische Größen (E6), beschreiben an Beispielen Veränderungen im Weltbild und in der Arbeitsweise der Naturwissenschaften, die durch die Arbeiten von Kopernikus, Kepler, Galilei und Newton initiiert wurden (E7, B3).	Drehbare Sternkarte und aktuelle astronomische Tabellen Animationen zur Darstellung der Planetenbewegungen	Orientierung am Himmel Beobachtungsaufgabe: Finden von Planeten am Nachthimmel Tycho Brahes Messungen, Keplers Schlussfolgerungen Benutzung geeigneter Apps
Newton'sches Gravitationsgesetz, Gravitationsfeld (6 Ustd.)	beschreiben Wechselwirkungen im Gravitationsfeld und verdeutlichen den Unterschied zwischen Feldkonzept und Kraftkonzept (UF2, E6),	Arbeit mit dem Lehrbuch, Recherche im Internet	Newton'sches Gravitationsgesetz als Zusammenfassung bzw. Äquivalent der Kepler'schen Gesetze Newton'sche "Mondrechnung" Anwendung des Newton'schen Gravitationsgesetzes und der Kepler'schen Gesetze zur Berechnung von Satellitenbahnen Feldbegriff diskutieren, Definition der Feldstärke über Messvorschrift "Kraft auf Probekörper"

Kompetenzen	Experiment / Medium	Kommentar/didaktische Hinweise
Die Schülerinnen und Schüler		
analysieren und berechnen auftretende Kräfte bei Kreisbewegungen (E6),	Messung der Zentralkraft An dieser Stelle sollen das experimentell-erkundende Verfahren und das deduktive Verfahren zur Erkenntnisgewinnung am Beispiel der Herleitung der Gleichung für die Zentripetalkraft als zwei wesentliche Erkenntnismethoden der Physik bearbeitet werden.	Beschreibung von gleichförmigen Kreisbewegungen, Winkelgeschwindigkeit, Periode, Bahngeschwindigkeit, Frequenz Experimentell-erkundende Erarbeitung der Formeln für Zentripetalkraft und Zentripetalbeschleunigung: Herausstellen der Notwendigkeit der Konstanthaltung der restlichen Größen bei der experimentellen Bestimmung einer von mehreren anderen Größen abhängigen physikalischen Größe (hier bei der Bestimmung der Zentripetalkraft in Abhängigkeit von der Masse des rotierenden Körpers) Ergänzend: Deduktion der Formel für die Zentripetalbeschleunigung Massenbestimmungen im Planetensystem, Fluchtgeschwindigkeiten Bahnen von Satelliten und Planeten
verwenden Erhaltungssätze (Energie- und Impulsbilanzen), um Bewegungszustände zu erklären sowie Bewegungsgrößen zu berechnen (E3, E6), erläutern unterschiedliche Positionen zum Sinn aktueller Forschungsprogramme (z.B. Raumfahrt, Mobilität) und beziehen Stellung dazu (B2, B3).	Skateboards und Medizinball Wasserrakete Raketentriebwerke für Modellraketen Recherchen zu aktuellen Projekten von ESA und DLR, auch zur Finanzierung	Impuls und Rückstoß Bewegung einer Rakete im luftleeren Raum Untersuchungen mit einer Wasserrakete, Simulation des Fluges einer Rakete in einer Excel-Tabelle Debatte über wissenschaftlichen Wert sowie Kosten und Nutzen ausgewählter Programme
	Die Schülerinnen und Schüler analysieren und berechnen auftretende Kräfte bei Kreisbewegungen (E6), verwenden Erhaltungssätze (Energie- und Impulsbilanzen), um Bewegungszustände zu erklären sowie Bewegungsgrößen zu berechnen (E3, E6), erläutern unterschiedliche Positionen zum Sinn aktueller Forschungsprogramme (z.B. Raumfahrt,	Die Schülerinnen und Schüler analysieren und berechnen auftretende Kräfte bei Kreisbewegungen (E6), Messung der Zentralkraft An dieser Stelle sollen das experimentell-erkundende Verfahren und das deduktive Verfahren zur Erkenntnisgewinnung am Beispiel der Herleitung der Gleichung für die Zentripetalkraft als zwei wesentliche Erkenntnismethoden der Physik bearbeitet werden. Verwenden Erhaltungssätze (Energie- und Impulsbilanzen), um Bewegungszustände zu erklären sowie Bewegungsgrößen zu berechnen (E3, E6), erläutern unterschiedliche Positionen zum Sinn aktueller Forschungsprogramme (z.B. Raumfahrt, Mobilität) und beziehen Stellung dazu (B2, B3).

Kontext: Schall

Leitfrage: Wie lässt sich Schall physikalisch untersuchen?

Inhaltliche Schwerpunkte: Schwingungen und Wellen, Kräfte und Bewegungen, Energie und Impuls

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden, (UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien/Gesetzen und Basiskonzepten beschreiben und erläutern,

(K1) Fragestellungen, Untersuchungen, Experimente und Daten nach gegebenen Strukturen dokumentieren und stimmig rekonstruieren, auch mit Unterstützung digitaler Werkzeuge

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Entstehung und Ausbreitung von Schall (4 Ustd.)	erklären qualitativ die Ausbreitung mechanischer Wellen (Transversal- oder Longitudinalwelle) mit den Eigenschaften des Ausbreitungsmediums (E6),	Stimmgabeln, Lautsprecher, Frequenzgenerator, Frequenzmessgerät, Schallpegelmesser, rußgeschwärzte Glasplatte, Schreibstimmgabel, Klingel und Vakuumglocke	Erarbeitung der Grundgrößen zur Beschreibung von Schwingungen und Wellen: Frequenz (Periode) und Amplitude mittels der Höreindrücke des Menschen
Modelle der Wellenausbreitung (4 Ustd.)	beschreiben Schwingungen und Wellen als Störungen eines Gleichgewichts und identifizieren die dabei auftretenden Kräfte (UF1, UF4),	Lange Schraubenfeder, Wellenwanne	Entstehung von Longitudinal- und Transversalwellen Ausbreitungsmedium, Möglichkeit der Ausbreitung longitudinaler. bzw. transversaler Schallwellen in Gasen, Flüssigkeiten und festen Körpern
Erzwungene Schwingungen und Resonanz (2 Ustd.)	erläutern das Auftreten von Resonanz mithilfe von Wechselwirkung und Energie (UF1).	Stimmgabeln	Resonanz (auch Tacoma-Bridge, Millennium- Bridge) Resonanzkörper von Musikinstrumenten
10 Ustd.	Summe		1

2.1.2.2 Qualifikationsphase: Grundkurs

Inhaltsfeld: Quantenobjekte (GK)

Kontext: Erforschung des Photons

Leitfrage: Wie kann das Verhalten von Licht beschrieben und erklärt werden?

Inhaltliche Schwerpunkte: Photon (Wellenaspekt)

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden,

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern.

(K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar/didaktische Hinweise
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Beugung und Interferenz Lichtwellenlänge, Lichtfrequenz, Kreiswellen, ebene Wellen, Beugung, Brechung (7 Ustd.)	veranschaulichen mithilfe der <i>Wellenwanne</i> qualitativ unter Verwendung von Fachbegriffen auf der Grundlage des Huygens'schen Prinzips Kreiswellen, ebene Wellen sowie die Phänomene Beugung, Interferenz, Reflexion und Brechung (K3), bestimmen Wellenlängen und Frequenzen von Licht mit <i>Doppelspalt</i> und <i>Gitter</i> (E5),	Doppelspalt und Gitter, Wellenwanne quantitative Experimente mit Laserlicht	Ausgangspunkt: Beugung von Laserlicht Modellbildung mit Hilfe der Wellenwanne (ggf. als Schülerpräsentation) Bestimmung der Wellenlängen von Licht mit Doppelspalt und Gitter Sehr schön sichtbare Beugungsphänomene finden sich vielfach bei Meereswellen (s. Google-Earth)
Quantelung der Energie von Licht, Austrittsarbeit (7 Ustd.)	demonstrieren anhand eines Experiments zum Photoeffekt den Quantencharakter von Licht und bestimmen den Zusammenhang von Energie, Wellenlänge und Frequenz von Photonen sowie die Austrittsarbeit der Elektronen (E5, E2),	Photoeffekt Hallwachsversuch Vakuumphotozelle	Roter Faden: Von Hallwachs bis Elektronenbeugung Bestimmung des Planck'schen Wirkungsquantums und der Austrittsarbeit Hinweis: Formel für die max. kinetische Energie der Photoelektronen wird zunächst vorgegeben. Der Zusammenhang zwischen Spannung, Ladung und Überführungsarbeit wird ebenfalls vorgegeben und nur plausibel gemacht. Er muss an dieser Stelle nicht grundlegend hergeleitet werden
14 Ustd.	Summe		·

Kontext: Erforschung des Elektrons

Leitfrage: Wie können physikalische Eigenschaften wie die Ladung und die Masse eines Elektrons gemessen werden?

Inhaltliche Schwerpunkte: Elektron (Teilchenaspekt)

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(UF3) physikalische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren,

- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

Inhalt (Ustd. à 45 min) Elementarladung (5 Ustd.)	Kompetenzen Die Schülerinnen und Schüler erläutern anhand einer vereinfachten Version des Millikanversuchs die grundlegenden Ideen und Ergebnisse zur Bestimmung der Elementarladung (UF1, E5), untersuchen, ergänzend zum Realexperiment,	schwebender Wattebausch Millikanversuch Schwebefeldmethode (keine Stokes sche Reibung)	Kommentar Begriff des elektrischen Feldes in Analogie zum Gravitationsfeld besprechen, Definition der Feldstärke über die Kraft auf einen Probekörper, in diesem Fall die Ladung Homogenes elektrisches Feld im Plattenkondensator,
Elektronenmasse	Computersimulationen zum Verhalten von Quantenobjekten (E6). beschreiben Eigenschaften und Wirkungen	Auch als Simulation moglich	Zusammenhangs zwischen Feldstärke im Plattenkondensator, Spannung und Abstand der Kondensatorplatten vorgeben und durch Auseinanderziehen der geladenen Platten demonstrieren Einführung der 3-Finger-Regel und Angabe der
(7 Ustd.)	homogener elektrischer und magnetischer Felder und erläutern deren Definitionsgleichungen. (UF2, UF1), bestimmen die Geschwindigkeitsänderung eines Ladungsträgers nach Durchlaufen einer elektrischen Spannung (UF2), modellieren Vorgänge im Fadenstrahlrohr (Energie der Elektronen, Lorentzkraft) mathematisch, variieren Parameter und leiten dafür deduktiv Schlussfolgerungen her, die sich experimentell überprüfen lassen, und ermitteln die Elektronenmasse (E6, E3, E5),	Fadenstrahlrohr und Helmholtzspulenpaar auch Ablenkung des Strahls mit Permanentmagneten (Lorentzkraft) evtl. Stromwaage bei hinreichend zur Verfügung stehender Zeit) Messung der Stärke von Magnetfeldern mit der Hallsonde	Gleichung für die Lorentzkraft: Einführung des Begriffs des magnetischen Feldes (in Analogie zu den beiden anderen Feldern durch Kraft auf Probekörper, in diesem Fall bewegte Ladung oder stromdurchflossener Leiter) und des Zusammenhangs zwischen magnetischer Kraft, Leiterlänge und Stromstärke. Vertiefung des Zusammenhangs zwischen Spannung, Ladung und Überführungsarbeit am Beispiel Elektronenkanone.

Streuung von Elektronen an Festkörpern, de Broglie- Wellenlänge (3 Ustd.)	erläutern die Aussage der de Broglie-Hypothese, wenden diese zur Erklärung des Beugungsbildes beim <i>Elektronenbeugungsexperiment</i> an und bestimmen die Wellenlänge der Elektronen (UF1, UF2, E4).	Experiment zur Elektronenbeugung an polykristallinem Graphit	Veranschaulichung der Bragg-Bedingung analog zur Gitterbeugung
15 Ustd.	Summe		

Kontext: Photonen und Elektronen als Quantenobjekte

Leitfrage: Kann das Verhalten von Elektronen und Photo-nen durch ein gemeinsames Modell beschrieben werden? Inhaltliche Schwerpunkte: Elektron und Photon (Teilchenaspekt, Wellenaspekt), Quantenobjekte und ihre Eigenschaften

Kompetenzschwerpunkte: Schülerinnen und Schüler können

- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.
- (K4) sich mit anderen über physikalische Sachverhalte und Erkenntnisse kritisch-konstruktiv austauschen und dabei Behauptungen oder Beurteilungen durch Argumente belegen bzw. widerlegen.
- (B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Licht und Materie (5 Ustd.)	erläutern am Beispiel der Quantenobjekte Elektron und Photon die Bedeutung von Modellen als grundlegende Erkenntniswerkzeuge in der Physik (E6, E7),	Computersimulation Doppelspalt Photoeffekt	Reflexion der Bedeutung der Experimente für die Entwicklung der Quantenphysik
	verdeutlichen die Wahrscheinlichkeitsinterpretation für Quantenobjekte unter Verwendung geeigneter Darstellungen (Graphiken, Simulationsprogramme) (K3).		
	zeigen an Beispielen die Grenzen und Gültigkeitsbereiche von Wellen- und Teilchenmodellen für Licht und Elektronen auf (B4, K4),		
	beschreiben und diskutieren die Kontroverse um die Kopenhagener Deutung und den Welle-Teilchen- Dualismus (B4, K4).		
5 Ustd.	Summe		

Inhaltsfeld: Elektrodynamik (GK)

Kontext: Energieversorgung und Transport mit Generatoren und Transformatoren

Leitfrage: Wie kann elektrische Energie gewonnen, verteilt und bereitgestellt werden?

Inhaltliche Schwerpunkte: Spannung und elektrische Energie, Induktion, Spannungswandlung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

- (E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden,
- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,
- (B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten.

Inhalt (Ustd. à 45 min) Wandlung von mechanischer in elektrische Energie: Elektromagnetische Induktion	Kompetenzen Die Schülerinnen und Schüler erläutern am Beispiel der Leiterschaukel das Auftreten einer Induktionsspannung durch die Wirkung der Lorentzkraft auf bewegte Ladungsträger (UF1, E6), definieren die Spannung als Verhältnis von Energie und Ladung und bestimmen damit Energien bei elektrischen Leitungsvorgängen (UF2),	bewegter Leiter im (homogenen) Magnetfeld - "Leiterschaukelversuch" Messung von Spannungen mit diversen Spannungsmessgeräten (nicht	Kommentar Definition der Spannung und Erläuterung anhand von Beispielen für Energieumwandlungsprozesse bei Ladungstransporten, Anwendungsbeispiele. Das Entstehen einer Induktionsspannung bei bewegtem Leiter im Magnetfeld wird mit Hilfe der Lorentzkraft erklärt, eine Beziehung zwischen
Induktionsspannung (5 Ustd.)	bestimmen die relative Orientierung von Bewegungsrichtung eines Ladungsträgers, Magnetfeldrichtung und resultierender Kraftwirkung mithilfe einer Drei-Finger-Regel (UF2, E6), werten Messdaten, die mit einem Oszilloskop bzw. mit einem Messwerterfassungssystem gewonnen wurden, im Hinblick auf Zeiten, Frequenzen und Spannungen aus (E2, E5).	nur an der Leiterschaukel) Gedankenexperimente zur Überführungsarbeit, die an einer Ladung verrichtet wird. Deduktive Herleitung der Beziehung zwischen <i>U</i> , <i>v</i> und <i>B</i> .	Induktionsspannung, Leitergeschwindigkeit und Stärke des Magnetfeldes wird (deduktiv) hergeleitet. Die an der Leiterschaukel registrierten (zeitabhängigen) Induktionsspannungen werden mit Hilfe der hergeleiteten Beziehung auf das Zeit-Geschwindigkeit-Gesetz des bewegten Leiters zurückgeführt.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Technisch praktikable Generatoren:	recherchieren bei vorgegebenen Fragestellungen historische Vorstellungen und Experimente zu Induktionserscheinungen (K2),	Internetquellen, Lehrbücher, Firmeninformationen, Filme und Applets zum Generatorprinzip	Hier bietet es sich an, arbeitsteilige Präsentationen auch unter Einbezug von Realexperimenten anfertigen zu lassen.
Erzeugung sinusförmiger Wechselspannungen	erläutern adressatenbezogen Zielsetzungen, Aufbauten und Ergebnisse von Experimenten im Bereich der Elektrodynamik jeweils sprachlich angemessen und verständlich (K3),	Experimente mit drehenden Leiterschleifen in (näherungsweise homogenen) Magnetfeldern,	
(4 Ustd.)		Wechselstromgeneratoren	
	erläutern das Entstehen sinusförmiger Wechselspannungen in Generatoren (E2, E6), werten Messdaten, die mit einem Oszilloskop bzw. mit einem Messwerterfassungssystem gewonnen wurden, im Hinblick auf Zeiten, Frequenzen und Spannungen aus (E2, E5).	Messung und Registrierung von Induktionsspannungen mit Oszilloskop und digitalem Messwerterfassungssystem	Der Zusammenhang zwischen induzierter Spannung und zeitlicher Veränderung der senkrecht vom Magnetfeld durchsetzten Fläche wird "deduktiv" erschlossen.
	führen Induktionserscheinungen an einer Leiterschleife auf die beiden grundlegenden Ursachen "zeitlich veränderliches Magnetfeld" bzw. "zeitlich veränderliche (effektive) Fläche" zurück (UF3, UF4),		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Nutzbarmachung elektrischer Energie durch "Transformation" Transformator (5 Ustd.)	erläutern adressatenbezogen Zielsetzungen, Aufbauten und Ergebnisse von Experimenten im Bereich der Elektrodynamik jeweils sprachlich angemessen und verständlich (K3), ermitteln die Übersetzungsverhältnisse von Spannung und Stromstärke beim Transformator (UF1, UF2). geben Parameter von Transformatoren zur gezielten Veränderung einer elektrischen Wechselspannung an (E4), werten Messdaten, die mit einem Oszilloskop bzw. mit einem Messwerterfassungssystem gewonnen wurden, im Hinblick auf Zeiten, Frequenzen und Spannungen aus (E2, E5). führen Induktionserscheinungen an einer Leiterschleife auf die beiden grundlegenden Ursachen "zeitlich veränderliches Magnetfeld" bzw. "zeitlich veränderliche (effektive) Fläche" zurück (UF3, UF4),	diverse "Netzteile" von Elektro- Kleingeräten (mit klassischem Transformator) Internetquellen, Lehrbücher, Firmeninformationen Demo-Aufbautransformator mit geeigneten Messgeräten ruhende Induktionsspule in wechselstromdurchflossener Feldspule - mit Messwerterfassungssystem zur zeitaufgelösten Registrierung der Induktionsspannung und des zeitlichen Verlaufs der Stärke des magnetischen Feldes	Der Transformator wird eingeführt und die Übersetzungsverhältnisse der Spannungen experimentell ermittelt. Dies kann auch durch einen Schülervortrag erfolgen (experimentell und medial gestützt). Der Zusammenhang zwischen induzierter Spannung und zeitlicher Veränderung der Stärke des magnetischen Feldes wird experimentell im Lehrerversuch erschlossen. Die registrierten Messdiagramme werden von den SuS eigenständig ausgewertet.
Energieerhaltung Ohm'sche "Verluste" (4 Ustd.)	verwenden ein physikalisches Modellexperiment zu Freileitungen, um technologische Prinzipien der Bereitstellung und Weiterleitung von elektrischer Energie zu demonstrieren und zu erklären (K3), bewerten die Notwendigkeit eines geeigneten Transformierens der Wechselspannung für die effektive Übertragung elektrischer Energie über große Entfernungen (B1), zeigen den Einfluss und die Anwendung physikalischer Grundlagen in Lebenswelt und Technik am Beispiel der Bereitstellung und Weiterleitung elektrischer Energie auf (UF4), beurteilen Vor- und Nachteile verschiedener Möglichkeiten zur Übertragung elektrischer Energie über große Entfernungen (B2, B1, B4).	Modellexperiment (z.B. mit Hilfe von Aufbautransformatoren) zur Energieübertragung und zur Bestimmung der "Ohm'schen Verluste" bei der Übertragung elektrischer Energie bei unterschiedlich hohen Spannungen	Hier bietet sich ein arbeitsteiliges Gruppenpuzzle an, in dem Modellexperimente einbezogen werden.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
18 Ustd.	Summe		

Kontext: Wirbelströme im Alltag

Leitfrage: Wie kann man Wirbelströme technisch nutzen?

Inhaltliche Schwerpunkte: Induktion

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern.
- (B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Lenz'sche Regel (4 Ustd.)	erläutern anhand des <i>Thomson'schen Ringversuchs</i> die Lenz'sche Regel (E5, UF4), bewerten bei technischen Prozessen das Auftreten erwünschter bzw. nicht erwünschter Wirbelströme (B1),	Freihandexperiment: Untersuchung der Relativbewegung eines aufgehängten Metallrings und eines starken Stabmagneten	Ausgehend von kognitiven Konflikten bei den Ringversuchen wird die Lenz'sche Regel erarbeitet
		Thomson'scher Ringversuch	Erarbeitung von Anwendungsbeispielen zur
		diverse technische und spielerische Anwendungen, z.B. Dämpfungselement an einer Präzisionswaage, Wirbelstrombremse, "fallender Magnet" im Alu-Rohr.	Lenz'schen Regel (z.B. Wirbelstrombremse bei Fahrzeugen oder an der Kreissäge)
4 Ustd.	Summe		

Inhaltsfeld: Strahlung und Materie (GK)

Kontext: Erforschung des Mikro- und Makrokosmos

Leitfrage: Wie gewinnt man Informationen zum Aufbau der Materie?

Inhaltliche Schwerpunkte: Energiequantelung der Atomhülle, Spektrum der elektromagnetischen Strahlung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Kern-Hülle-Modell (2 Ustd.)	erläutern, vergleichen und beurteilen Modelle zur Struktur von Atomen und Materiebausteinen (E6, UF3, B4),	Literaturrecherche, Schulbuch	Ausgewählte Beispiele für Atommodelle
Energieniveaus der Atomhülle (2 Ustd.)	erklären die Energie absorbierter und emittierter Photonen mit den unterschiedlichen Energieniveaus in der Atomhülle (UF1, E6),	Erzeugung von Linienspektren mithilfe von Gasentladungslampen	Deutung der Linienspektren
Quantenhafte Emission und Absorption von Photonen (3 Ustd.)	erläutern die Bedeutung von Flammenfärbung und Linienspektren bzw. Spektralanalyse, die Ergebnisse des Franck-Hertz-Versuches sowie die charakteristischen Röntgenspektren für die Entwicklung von Modellen der diskreten Energiezustände von Elektronen in der Atomhülle (E2, E5, E6, E7),	Franck-Hertz-Versuch	Es kann das Bohr'sche Atommodell angesprochen werden (ohne Rechnungen)
Röntgenstrahlung (3 Ustd.)	erläutern die Bedeutung von Flammenfärbung und Linienspektren bzw. Spektralanalyse, die Ergebnisse des Franck-Hertz-Versuches sowie die charakteristischen Röntgenspektren für die Entwicklung von Modellen der diskreten Energiezustände von Elektronen in der Atomhülle (E2, E5, E6, E7),	Aufnahme von Röntgenspektren (kann mit interaktiven Bildschirmexperimenten (IBE) oder Lehrbuch geschehen, falls keine Schulröntgeneinrichtung vorhanden ist)	Im Zuge der "Elemente der Quantenphysik" kann die Röntgenstrahlung bereits als Umkehrung des Photo- effekts bearbeitet werden Mögliche Ergänzungen: Bremsspektrum mit h- Bestimmung / Bragg-Reflexion

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Sternspektren und Fraunhoferlinien (3 Ustd.)	interpretieren Spektraltafeln des Sonnenspektrums im Hinblick auf die in der Sonnen- und Erdatmosphäre vorhandenen Stoffe (K3, K1), erklären Sternspektren und Fraunhoferlinien (UF1, E5, K2), stellen dar, wie mit spektroskopischen Methoden Informationen über die Entstehung und den Aufbau des Weltalls gewonnen werden können (E2, K1),	Flammenfärbung Darstellung des Sonnenspektrums mit seinen Fraunhoferlinien Spektralanalyse	u. a. Durchstrahlung einer Na-Flamme mit Na- und Hg-Licht (Schattenbildung)
13 Ustd.	Summe		

Kontext: Mensch und Strahlung

Leitfrage: Wie wirkt Strahlung auf den Menschen?

Inhaltliche Schwerpunkte: Kernumwandlungen, Ionisierende Strahlung, Spektrum der elektromagnetischen Strahlung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

- (UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,
- (B3) an Beispielen von Konfliktsituationen mit physikalisch-technischen Hintergründen kontroverse Ziele und Interessen sowie die Folgen wissenschaftlicher Forschung aufzeigen und bewerten,
- (B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Strahlungsarten (2 Ustd.)	unterscheiden α-, β-, γ-Strahlung und Röntgenstrahlung sowie Neutronen- und Schwerionenstrahlung (UF3),	Recherche	Wiederholung und Vertiefung aus der Sek. I
	erläutern den Nachweis unterschiedlicher Arten ionisierender Strahlung mithilfe von Absorptionsexperimenten (E4, E5),	Absorptionsexperimente zu α-, β-, γ-Strahlung	
	bewerten an ausgewählten Beispielen Rollen und Beiträge von Physikerinnen und Physikern zu Erkenntnissen in der Kern- und Elementarteilchenphysik (B1, B3),		
Elementumwandlung (1 Ustd.)	erläutern den Begriff Radioaktivität und beschreiben zugehörige Kernumwandlungsprozesse (UF1, K1),	Nuklidkarte	
Detektoren (3 Ustd.)	erläutern den Aufbau und die Funktionsweise von Nachweisgeräten für ionisierende Strahlung (<i>Geiger-Müller-Zählrohr</i>) und bestimmen Halbwertszeiten und Zählraten (UF1, E2),	Geiger-Müller-Zählrohr	An dieser Stelle können Hinweise auf Halbleiterdetektoren gegeben werden.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Biologische Wirkung ionisierender Strahlung und Energieaufnahme im menschlichen Gewebe Dosimetrie (3 Ustd.)	beschreiben Wirkungen von ionisierender und elektromagnetischer Strahlung auf Materie und lebende Organismen (UF1), bereiten Informationen über wesentliche biologischmedizinische Anwendungen und Wirkungen von ionisierender Strahlung für unterschiedliche Adressaten auf (K2, K3, B3, B4), begründen in einfachen Modellen wesentliche biologisch-medizinische Wirkungen von ionisierender Strahlung mit deren typischen physikalischen	ggf. Einsatz eines Films / eines Videos	Sinnvolle Beispiele sind die Nutzung von ionisierender Strahlung zur Diagnose und zur Therapie bei Krankheiten des Menschen (von Lebewesen) sowie zur Kontrolle technische Anlagen.
	Eigenschaften (E6, UF4), erläutern das Vorkommen künstlicher und natürlicher Strahlung, ordnen deren Wirkung auf den Menschen mithilfe einfacher dosimetrischer Begriffe ein und bewerten Schutzmaßnahmen im Hinblick auf die Strahlenbelastungen des Menschen im Alltag (B1, K2). bewerten Gefahren und Nutzen der Anwendung		Erläuterung von einfachen dosimetrischen Begriffe: Aktivität, Energiedosis, Äquivalentdosis
	physikalischer Prozesse, u. a. von ionisierender Strahlung, auf der Basis medizinischer, gesellschaftlicher und wirtschaftlicher Gegebenheiten (B3, B4) bewerten Gefahren und Nutzen der Anwendung ionisierender Strahlung unter Abwägung unterschiedlicher Kriterien (B3, B4),		
9 Ustd.	ionisierender Strahlung unter Abwägung		

Kontext: Forschung am CERN und DESY

Leitfrage: Was sind die kleinsten Bausteine der Materie? Inhaltliche Schwerpunkte: Standardmodell der Elementarteilchen Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF3) physikalische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

Inhalt (1)	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Kernbausteine und Elementarteilchen (4 Ustd.)	erläutern mithilfe des aktuellen Standardmodells den Aufbau der Kernbausteine und erklären mit ihm Phänomene der Kernphysik (UF3, E6),	In diesem Bereich sind i. d. R. keine Realexperimente für Schulen möglich.	
	erklären an einfachen Beispielen Teilchenumwandlungen im Standardmodell (UF1). recherchieren in Fachzeitschriften, Zeitungsartikeln bzw. Veröffentlichungen von Forschungseinrichtungen zu ausgewählten aktuellen Entwicklungen in der Elementarteilchenphysik (K2).	Es z.B. kann auf Internetseiten des CERN und DESY zurückgegriffen werden.	Mögliche Schwerpunktsetzung: Paarerzeugung, Paarvernichtung,
(Virtuelles) Photon als Austauschteilchen der elektromagnetischen Wechselwirkung	vergleichen in Grundprinzipien das Modell des Photons als Austauschteilchen für die elektromagnetische Wechselwirkung exemplarisch für fundamentale Wechselwirkungen mit dem Modell des Feldes (E6).	Lehrbuch, Animationen	Veranschaulichung der Austauschwechselwirkung mithilfe geeigneter mechanischer Modelle, auch Problematik dieser Modelle thematisieren
Konzept der Austauschteilchen vs. Feldkonzept			
(2 Ustd.)			
6 Ustd.	Summe		

Inhaltsfeld: Relativität von Raum und Zeit (GK)

Kontext: Navigationssysteme

Leitfrage: Welchen Einfluss hat Bewegung auf den Ablauf der Zeit? Inhaltliche Schwerpunkte: Konstanz der Lichtgeschwindigkeit, Zeitdilatation

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern.

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Relativität der Zeit (5 Ustd.)	interpretieren das <i>Michelson-Morley-Experiment</i> als ein Indiz für die Konstanz der Lichtgeschwindigkeit (UF4), erklären anschaulich mit der <i>Lichtuhr</i> grundlegende Prinzipien der speziellen Relativitätstheorie und ermitteln quantitativ die Formel für die Zeitdilatation (E6, E7), erläutern qualitativ den <i>Myonenzerfalls</i> in der Erdatmosphäre als experimentellen Beleg für die von der Relativitätstheorie vorhergesagte Zeitdilatation (E5, UF1). erläutern die relativistische Längenkontraktion über eine Plausibilitätsbetrachtung (K3), begründen mit der Lichtgeschwindigkeit als Obergrenze für Geschwindigkeiten von Objekten, dass eine additive Überlagerung von Geschwindigkeiten nur für "kleine" Geschwindigkeiten gilt (UF2), erläutern die Bedeutung der Konstanz der Lichtgeschwindigkeit als Ausgangspunkt für die Entwicklung der speziellen Relativitätstheorie (UF1),	Experiment von Michelson und Morley (Computersimulation) Lichtuhr (Gedankenexperiment / Computersimulation) Myonenzerfall (Experimentepool der Universität Wuppertal)	Ausgangsproblem: Exaktheit der Positionsbestimmung mit Navigationssystemen Begründung der Hypothese von der Konstanz der Lichtgeschwindigkeit mit dem Ausgang des Michelson-Morley-Experiments Herleitung der Formel für die Zeitdilatation am Beispiel einer "bewegten Lichtuhr". Der Myonenzerfall in der Erdatmosphäre dient als experimentelle Bestätigung der Zeitdilatation. Betrachtet man das Bezugssystem der Myonen als ruhend, kann die Längenkontraktion der Atmosphäre plausibel gemacht werden. Die Formel für die Längenkontraktion wird angegeben.
5 Ustd.	Summe		

Kontext: Teilchenbeschleuniger

Leitfrage: Ist die Masse bewegter Teilchen konstant?

Inhaltliche Schwerpunkte: Veränderlichkeit der Masse, Energie-Masse Äquivalenz

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

(B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
"Schnelle" Ladungs- träger in E- und B- Feldern (2 Ustd.)	erläutern die Funktionsweise eines <i>Zyklotrons</i> und argumentieren zu den Grenzen einer Verwendung zur Beschleunigung von Ladungsträgern bei Berücksichtigung relativistischer Effekte (K4, UF4),	Zyklotron (in einer Simulation mit und ohne Massenveränderlichkeit)	Der Einfluss der Massenzunahme wird in der Simulation durch das "Aus-dem-Takt-Geraten" eines beschleunigten Teilchens im Zyklotron ohne Rechnung veranschaulicht.
Ruhemasse und dynamische Masse (4 Ustd.)	erläutern die Energie-Masse Äquivalenz (UF1). zeigen die Bedeutung der Beziehung $E=mc^2$ für die Kernspaltung und -fusion auf (B1, B3)	Film / Video	Die Formeln für die dynamische Masse und $E=mc^2$ werden als deduktiv herleitbar angegeben. Erzeugung und Vernichtung von Teilchen, Hier können Texte und Filme zu Hiroshima und Nagasaki eingesetzt werden.
6 Ustd.	Summe		'

Kontext: Das heutige Weltbild

Leitfrage: Welchen Beitrag liefert die Relativitätstheorie zur Erklärung unserer Welt?

Inhaltliche Schwerpunkte: Konstanz der Lichtgeschwindigkeit, Zeitdilatation, Veränderlichkeit der Masse, Energie-Masse Äquivalenz

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Gegenseitige Bedingung von Raum und Zeit	diskutieren die Bedeutung von Schlüsselexperimenten bei physikalischen Paradigmenwechseln an Beispielen aus der Relativitätstheorie (B4, E7),	Lehrbuch, Film / Video	
(2 Ustd.)	beschreiben Konsequenzen der relativistischen Einflüsse auf Raum und Zeit anhand anschaulicher und einfacher Abbildungen (K3)		
2 Ustd.	Summe		

2.1.2.3 Qualifikationsphase: Leistungskurs

Inhaltsfeld: Relativitätstheorie (LK)

Kontext: Satellitennavigation – Zeitmessung ist nicht absolut

Leitfrage: Welchen Einfluss hat Bewegung auf den Ablauf der Zeit?

Inhaltliche Schwerpunkte: Konstanz der Lichtgeschwindigkeit, Problem der Gleichzeitigkeit

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Konstanz der Lichtgeschwindigkeit und Problem der Gleichzeitigkeit Inertialsysteme Relativität der Gleichzeitigkeit (4 Ustd.)	begründen mit dem Ausgang des Michelson- Morley-Experiments die Konstanz der Lichtgeschwindigkeit (UF4, E5, E6), erläutern das Problem der relativen Gleichzeitigkeit mit in zwei verschiedenen Inertialsystemen jeweils synchronisierten Uhren (UF2), begründen mit der Lichtgeschwindigkeit als Obergrenze für Geschwindigkeiten von Objekten Auswirkungen auf die additive Überlagerung von Geschwindigkeiten (UF2).	Experiment von Michelson und Morley (Computersimulation) Relativität der Gleichzeitigkeit (Video / Film)	Ausgangsproblem: Exaktheit der Positionsbestimmung mit Navigationssystemen Begründung der Hypothese von der Konstanz der Lichtgeschwindigkeit mit dem Ausgang des Michelson- und Morley-Experiments (Computersimulation). Das Additionstheorem für relativistische Geschwindigkeiten kann ergänzend ohne Herleitung angegeben werden.
4 Ustd.	Summe		

Kontext: Höhenstrahlung

Leitfrage: Warum erreichen Myonen aus der oberen Atmo-sphäre die Erdoberfläche?

Inhaltliche Schwerpunkte: Zeitdilatation und Längenkontraktion

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Zeitdilatation und relativistischer Faktor (2 Ustd., zusätzlich Exkursion)	leiten mithilfe der Konstanz der Lichtgeschwindigkeit und des Modells Lichtuhr quantitativ die Formel für die Zeitdilatation her (E5), reflektieren die Nützlichkeit des Modells Lichtuhr hinsichtlich der Herleitung des relativistischen Faktors (E7). erläutern die Bedeutung der Konstanz der Lichtgeschwindigkeit als Ausgangspunkt für die Entwicklung der speziellen Relativitätstheorie (UF1)	Lichtuhr (Gedankenexperiment / Computersimulation) Myonenzerfall (Experimente- pool der Universität – ggfs. Exkursion an eine Universität)	Mit der Lichtuhr wird der relativistische Faktor γ hergeleitet. Der Myonenzerfall in der Erdatmosphäre dient als eine experimentelle Bestätigung der Zeitdilatation.
Längenkontraktion (2 Ustd.)	begründen den Ansatz zur Herleitung der Längenkontraktion (E6), erläutern die relativistischen Phänomene Zeitdilatation und Längenkontraktion anhand des Nachweises von in der oberen Erdatmosphäre entstehenden Myonen (UF1), beschreiben Konsequenzen der relativistischen Einflüsse auf Raum und Zeit anhand anschaulicher und einfacher Abbildungen (K3),	Myonenzerfall (Experimente- pool der Universität – ggfs. Exkursion an eine Universität) – s. o.	Der Myonenzerfall dient als experimentelle Bestätigung der Längenkontraktion (im Vergleich zur Zeitdilatation) – s. o. Herleitung der Formel für die Längenkontraktion
4 Ustd.	Summe		

Kontext: Teilchenbeschleuniger - Warum Teilchen aus dem Takt geraten

Leitfrage: Ist die Masse bewegter Teilchen konstant?

Inhaltliche Schwerpunkte: Relativistische Massenzunahme, Energie-Masse-Beziehung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

(B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
"Schnelle" Ladungs- träger in E- und B-Fel- dern (4 Ustd.)	erläutern auf der Grundlage historischer Dokumente ein Experiment (Bertozzi-Versuch) zum Nachweis der relativistischen Massenzunahme (K2, K3),	Bertozzi-Experiment (anhand von Literatur)	Hier würde sich eine Schülerpräsentation des Bertozzi- Experiments anbieten. Der Einfluss der Massenzunahme wird in einer Simulation durch das "Aus-dem-Takt-Geraten" eines beschleunigten Teilchens im Zyklotron ohne Rechnung veranschaulicht. Die Formel für die dynamische Masse wird als deduktiv herleitbar angegeben.
Ruhemasse und dynamische Masse (2 Ustd.)	erläutern die Energie-Masse-Beziehung (UF1) berechnen die relativistische kinetische Energie von Teilchen mithilfe der Energie-Masse- Beziehung (UF2)		Die Differenz aus dynamischer Masse und Ruhemasse wird als Maß für die kinetische Energie eines Körpers identifiziert.
Bindungsenergie im Atomkern Annihilation (2 Ustd.)	beschreiben die Bedeutung der Energie-Masse-Äquivalenz hinsichtlich der Annihilation von Teilchen und Antiteilchen (UF4), bestimmen und bewerten den bei der Annihilation von Teilchen und Antiteilchen frei werdenden Energiebetrag (E7, B1), beurteilen die Bedeutung der Beziehung E=mc² für Erforschung und technische Nutzung von Kernspaltung und Kernfusion (B1, B3),	Historische Aufnahme von Teilchenbahnen	Interpretation des Zusammenhangs zwischen Bindungsenergie pro Nukleon und der Kernspaltungs- bzw. Kernfusionsenergie bei den entsprechenden Prozessen. Es können Filme zu Hiroshima und Nagasaki eingesetzt werden. Erzeugung und Vernichtung von Teilchen
8 Ustd.	Summe		.1

Kontext: Satellitennavigation – Zeitmessung unter dem Einfluss von Geschwindigkeit und Gravitation

Leitfrage: Beeinflusst Gravitation den Ablauf der Zeit?

Inhaltliche Schwerpunkte: Der Einfluss der Gravitation auf die Zeitmessung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Gravitation und Zeitmessung (2 Ustd.)	beschreiben qualitativ den Einfluss der Gravitation auf die Zeitmessung (UF4)	Der Gang zweier Atomuhren in unterschiedlicher Höhe in einem Raum (früheres Experimente der PTB Braunschweig) Flug von Atomuhren um die Erde (Video)	Dieser Unterrichtsabschnitt soll lediglich einen ersten – qualitativ orientierten – Einblick in die Äquivalenz von Gravitation und gleichmäßig beschleunigten Bezugssystemen geben. Elemente des Kontextes Satellitennavigation können genutzt werden, um sowohl die Zeitdilatation (infolge der unterschiedlichen Geschwindigkeiten der Satelliten) als auch die Gravitationswirkung (infolge ihres Aufenthalts an verschiedenen Orten im Gravitationsfeld der Erde) zu verdeutlichen.
Die Gleichheit von träger und schwerer Masse (im Rahmen der heutigen Messgenauigkeit) (2 Ustd.)	veranschaulichen mithilfe eines einfachen gegenständlichen Modells den durch die Einwirkung von massebehafteten Körpern hervorgerufenen Einfluss der Gravitation auf die Zeitmessung sowie die "Krümmung des Raums" (K3).	Einsteins Fahrstuhl- Gedankenexperiment Das Zwillingsparadoxon (mit Beschleunigungsphasen und Phasen der gleichförmigen Bewegung Film / Video	An dieser Stelle könnte eine Schülerpräsentation erfolgen (mithilfe der Nutzung von Informationen und Animationen aus dem Internet)
4 Ustd.	Summe		

Kontext: Das heutige Weltbild

Leitfrage: Welchen Beitrag liefert die Relativitätstheorie zur Erklärung unserer Welt?

Inhaltliche Schwerpunkte: Konstanz der Lichtgeschwindigkeit, Problem der Gleichzeitigkeit, Zeitdilatation und Längenkontraktion, Relativistische Massenzunahme, Energie-Masse-Beziehung, Der Einfluss der Gravitation auf die Zeitmessung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Gegenseitige Bedingung von Raum und Zeit (2 Ustd.)	bewerten Auswirkungen der Relativitätstheorie auf die Veränderung des physikalischen Weltbilds (B4).	Lehrbuchtexte, Internetrecherche	Ggf. Schülervortrag
2 Ustd.	Summe		

Inhaltsfeld: Elektrik (LK)

Kontext: Untersuchung von Elektronen

Leitfrage: Wie können physikalische Eigenschaften wie die Ladung und die Masse eines Elektrons gemessen werden?

Inhaltliche Schwerpunkte: Eigenschaften elektrischer Ladungen und ihrer Felder,Bewegung von Ladungsträgern in elektrischen und magnetischen Feldern **Kompetenzschwerpunkte**: Schülerinnen und Schüler können

- (UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern.
- (UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,
- (B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten.
- (B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Grundlagen: Ladungstrennung, Ladungsträger (4 Ustd.)	erklären elektrostatische Phänomene und Influenz mithilfe grundlegender Eigenschaften elektrischer Ladungen (UF2, E6),	einfache Versuche zur Reibungselektrizität – Anziehung / Abstoßung, halbquantitative Versuche mit Hilfe eines Elektrometerverstärkers: Zwei aneinander geriebene Kunststoffstäbe aus unterschiedlichen Materialien tragen betragsmäßig gleiche, aber entgegengesetzte Ladungen, Influenzversuche	An dieser Stelle sollte ein Rückgriff auf die S I erfolgen. Das Elektron soll als (ein) Träger der negativen Ladung benannt und seine Eigenschaften untersucht werden.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Bestimmung der Elementarladung: elektrische Felder, Feldlinien potentielle Energie im elektrischen Feld, Spannung Kondensator Elementarladung (10 Ustd.)	beschreiben Eigenschaften und Wirkungen homogener elektrischer und magnetischer Felder und erläutern die Definitionsgleichungen der entsprechenden Feldstärken (UF2, UF1), erläutern und veranschaulichen die Aussagen, Idealisierungen und Grenzen von Feldlinienmodellen, nutzen Feldlinienmodelle zur Veranschaulichung typischer Felder und interpretieren Feldlinienbilder (K3, E6, B4),	Skizzen zum prinzipiellen Aufbau des Millikanversuchs, realer Versuchsaufbau oder entsprechende Medien (z. B: RCL (remote control laboratory), einfache Versuche und visuelle Medien zur Veranschaulichung elektrischer Felder im Feldlinienmodell, Plattenkondensator (homogenes E-Feld),	Die Versuchsidee "eines" Millikanversuchs wird erarbeitet. Der Begriff des elektrischen Feldes und das Feldlinienmodell werden eingeführt. Die elektrische Feldstärke in einem Punkt eines elektrischen Feldes, der Begriff "homogenes Feld" und die Spannung werden definiert.
	leiten physikalische Gesetze (u.a. die im homogenen elektrischen Feld gültige Beziehung zwischen Spannung und Feldstärke und den Term für die Lorentzkraft) aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2), entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimentelles Vorgehen sinnvoller ist (B4, UF2, E1),	evtl. Apparatur zur Messung der Feldstärke gemäß der Definition, Spannungsmessung am Plattenkondensator, Bestimmung der Elementarladung mit dem Millikanversuch	Zusammenhang zwischen E und U im homogenen Feld Bestimmung der Elementarladung mit Diskussion der Messgenauigkeit An dieser Stelle sollten Übungsaufgaben erfolgen, z.B. auch zum Coulomb'schen Gesetz. Dieses kann auch nur per Plausibilitätsbetrachtung eingeführt werden.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Bestimmung der Masse eines Elektrons: magnetische Felder, Feldlinien, potentielle Energie im elektrischen Feld, Energie bewegter Ladungsträger, Elektronenmasse (10 Ustd.)	erläutern an Beispielen den Stellenwert experimenteller Verfahren bei der Definition physikalischer Größen (elektrische und magnetische Feldstärke) und geben Kriterien zu deren Beurteilung an (z.B. Genauigkeit, Reproduzierbarkeit, Unabhängigkeit von Ort und Zeit) (B1, B4), treffen im Bereich Elektrik Entscheidungen für die Auswahl von Messgeräten (Empfindlichkeit, Genauigkeit, Auflösung und Messrate) im Hinblick auf eine vorgegebene Problemstellung (B1), beschreiben qualitativ die Erzeugung eines Elektronenstrahls in einer Elektronenstrahlröhre (UF1, K3), ermitteln die Geschwindigkeitsänderung eines Ladungsträgers nach Durchlaufen einer Spannung (auch relativistisch) (UF2, UF4, B1),	Fadenstrahlrohr (zunächst) zur Erarbeitung der Versuchsidee, (z.B.) Stromwaage zur Demonstration der Kraftwirkung auf stromdurchflossene Leiter im Magnetfeld sowie zur Veranschaulichung der Definition der magnetischen Feldstärke, Versuche mit z.B. Oszilloskop, Fadenstrahlrohr, altem (Monochrom-) Röhrenmonitor o. ä. zur Demonstration der Lorentzkraft, Fadenstrahlrohr zur e/m – Bestimmung (das Problem der Messung der magnetischen Feldstärke wird ausgelagert.)	Die Frage nach der Masse eines Elektrons führt zu weiteren Überlegungen. Als Versuchsidee wird (evtl. in Anlehnung an astronomischen Berechnungen in der EF) die Auswertung der Daten einer erzwungenen Kreisbewegung des Teilchens erarbeitet. Dazu wird der Begriff des magnetischen Feldes eingeführt sowie die Veranschaulichung magnetischer Felder (inkl. Feldlinienmodell) erarbeitet. Definition der magnetischen Feldstärke, Definition des homogenen Magnetfeldes, Kraft auf stromdurchflossene Leiter im Magnetfeld, Herleitung der Formel für die Lorentzkraft,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
	erläutern den Feldbegriff und zeigen dabei Gemeinsamkeiten und Unterschiede zwischen Gravitationsfeld, elektrischem und magnetischem Feld auf (UF3, E6),		
	entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimentelles Vorgehen sinnvoller ist (B4, UF2, E1),		Ein Verfahren zur Beschleunigung der Elektronen sowie zur Bestimmung ihrer Geschwindigkeit wird erarbeitet.
	erläutern und veranschaulichen die Aussagen, Idealisierungen und Grenzen von Feldlinienmodellen, nutzen Feldlinienmodelle zur Veranschaulichung typischer Felder und interpretieren Feldlinienbilder (K3, E6, B4),		
	bestimmen die relative Orientierung von Bewegungsrichtung eines Ladungsträgers, Magnetfeldrichtung und resultierender Kraftwirkung mithilfe einer Drei-Finger-Regel (UF2, E6),		
	leiten physikalische Gesetze (Term für die Lorentzkraft) aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2),		
	beschreiben qualitativ und quantitativ die Bewegung von Ladungsträgern in homogenen elektrischen und magnetischen Feldern sowie in gekreuzten Feldern (Wien-Filter, Hall-Effekt) (E1, E2, E3, E4, E5 UF1, UF4),		
	schließen aus spezifischen Bahnkurvendaten bei der e/m-Bestimmung und beim Massenspektrometer auf wirkende Kräfte sowie Eigenschaften von Feldern und bewegten Ladungsträgern (E5, UF2),		
24 Ustd.	Summe		

Kontext: Aufbau und Funktionsweise wichtiger Versuchs- und Messapparaturen

Leitfrage: Wie und warum werden physikalische Größen meistens elektrisch erfasst und wie werden sie verarbeitet?

Inhaltliche Schwerpunkte: Eigenschaften elektrischer Ladungen und ihrer Felder "Bewegung von Ladungsträgern in elektrischen und magnetischen Feldern **Kompetenzschwerpunkte**: Schülerinnen und Schüler können

- (UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,
- (UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.
- (E1) in unterschiedlichen Kontexten physikalische Probleme identifizieren, analysieren und in Form physikalischer Fragestellungen präzisieren,
- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,
- (B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten.
- (B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Anwendungen in Forschung und Technik: Bewegung von Ladungsträgern in Feldern (12 Ustd.)	beschreiben qualitativ und quantitativ die Bewegung von Ladungsträgern in homogenen elektrischen und magnetischen Feldern sowie in gekreuzten Feldern (Wien-Filter, Hall-Effekt) (E1, E2, E3, E4, E5 UF1, UF4), erstellen, bei Variation mehrerer Parameter, Tabellen und Diagramme zur Darstellung von Messwerten aus dem Bereich der Elektrik (K1, K3, UF3), beschreiben qualitativ die Erzeugung eines Elektronenstrahls in einer Elektronenstrahlröhre (UF1, K3), ermitteln die Geschwindigkeitsänderung eines Ladungsträgers nach Durchlaufen einer Spannung (auch relativistisch) (UF2, UF4, B1), schließen aus spezifischen Bahnkurvendaten beim Massenspektrometer auf wirkende Kräfte sowie Eigenschaften von Feldern und bewegten Ladungsträgern, (E5, UF2), erläutern den Feldbegriff und zeigen dabei Gemeinsamkeiten und Unterschiede zwischen Gravitationsfeld, elektrischem und magnetischem Feld auf (UF3, E6), erläutern den Einfluss der relativistischen Massenzunahme auf die Bewegung geladener Teilchen im Zyklotron (E6, UF4), leiten physikalische Gesetze aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2),	Hallsonde, Halleffektgerät, diverse Spulen, deren Felder vermessen werden (insbesondere lange Spulen und Helmholtzspulen), Elektronenstrahlablenkröhre visuelle Medien und Computersimulationen (ggf. RCLs) zum Massenspektrometer, Zyklotron und evtl. weiteren Teilchenbeschleunigern	Das Problem der Messung der Stärke des magnetischen Feldes der Helmholtzspulen (e/m – Bestimmung) wird wieder aufgegriffen, Vorstellung des Aufbaus einer Hallsonde und Erarbeitung der Funktionsweise einer Hallsonde, Veranschaulichung mit dem Halleffektgerät (Silber), Kalibrierung einer Hallsonde, Messungen mit der Hallsonde, u. a. nachträgliche Vermessung des Helmholtzspulenfeldes, Bestimmung der magnetischen Feldkonstante, Arbeits- und Funktionsweisen sowie die Verwendungszwecke diverser Elektronenröhren, Teilchenbeschleuniger und eines Massenspektrometers werden untersucht.

Inhalt (Ustd. à 45 min)	Kompetenzen	Experiment / Medium	Kommentar
	Die Schülerinnen und Schüler entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimentelles Vorgehen		
	sinnvoller ist (B4, UF2, E1), wählen Definitionsgleichungen zusammengesetzter physikalischer Größen sowie physikalische Gesetze (u.a. Coulomb'sches Gesetz, Kraft auf einen stromdurchflossenen Leiter im Magnetfeld, Lorentzkraft, Spannung im homogenen <i>E</i> -Feld) problembezogen aus (UF2),		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Moderne messtechnische Verfahren sowie Hilfsmittel zur Mathematisierung: Auf- und Entladung von Kondensatoren, Energie des elektrischen Feldes (10 Ustd.)	erläutern an Beispielen den Stellenwert experimenteller Verfahren bei der Definition physikalischer Größen (elektrische und magnetische Feldstärke) und geben Kriterien zu deren Beurteilung an (z.B. Genauigkeit, Reproduzierbarkeit, Unabhängigkeit von Ort und Zeit) (B1, B4), erläutern und veranschaulichen die Aussagen, Idealisierungen und Grenzen von Feldlinienmodellen, nutzen Feldlinienmodelle zur Veranschaulichung typischer Felder und interpretieren Feldlinienbilder (K3, E6, B4), entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimentelles Vorgehen sinnvoller ist (B4, UF2, E1), wählen Definitionsgleichungen zusammengesetzter physikalischer Größen sowie physikalische Gesetze (u.a. Coulomb'sches Gesetz, Kraft auf einen stromdurchflossenen Leiter im Magnetfeld, Lorentzkraft, Spannung im homogenen <i>E</i> -Feld) problembezogen aus (UF2), leiten physikalische Gesetze aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2), ermitteln die in elektrischen bzw. magnetischen Feldern gespeicherte Energie (Kondensator) (UF2), beschreiben qualitativ und quantitativ, bei vorgegebenen Lösungsansätzen, Ladungs- und Entladungsvorgänge in Kondensatoren (E4, E5, E6),	diverse Kondensatoren (als Ladungs-/ Energiespeicher), Aufbaukondensatoren mit der Möglichkeit die Plattenfläche und den Plattenabstand zu variieren, statische Voltmeter bzw. Elektrometermessverstärker, Schülerversuche zur Auf- und Entladung von Kondensatoren sowohl mit großen Kapazitäten (Messungen mit Multimeter) als auch mit kleineren Kapazitäten (Messungen mit Hilfe von Messwerterfassungssystemen), Computer oder GTR/CAS-Rechner zur Messwertverarbeitung	Kondensatoren werden als Ladungs-/ Energiespeicher vorgestellt (z.B. bei elektronischen Geräten wie Computern). Die (Speicher-) Kapazität wird definiert und der Zusammenhang zwischen Kapazität, Plattenabstand und Plattenfläche für den Plattenkondensator (deduktiv mit Hilfe der Grundgleichung des elektrischen Feldes) ermittelt. Plausibilitätsbetrachtung zur Grundgleichung des elektrischen Feldes im Feldlinienmodell, Ermittlung der elektrischen Feldkonstante (evtl. Messung), Auf- und Entladevorgänge bei Kondensatoren werden messtechnisch erfasst, computerbasiert ausgewertet und mithilfe von Differentialgleichungen beschrieben. deduktive Herleitung der im elektrischen Feld eines Kondensators gespeicherten elektrischen Energie

Inhalt (15.45 min)	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
	treffen im Bereich Elektrik Entscheidungen für die Auswahl von Messgeräten (Empfindlichkeit, Genauigkeit, Auflösung und Messrate) im Hinblick auf eine vorgegebene Problemstellung (B1),		
	wählen begründet mathematische Werkzeuge zur Darstellung und Auswertung von Messwerten im Bereich der Elektrik (auch computergestützte graphische Darstellungen, Linearisierungsverfahren, Kurvenanpassungen), wenden diese an und bewerten die Güte der Messergebnisse (E5, B4),		
22 Ustd.	Summe		

Kontext: Erzeugung, Verteilung und Bereitstellung elektrischer Energie

Leitfrage: Wie kann elektrische Energie gewonnen, verteilt und bereitgestellt werden?

Inhaltliche Schwerpunkte: Elektromagnetische Induktion

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Induktion, das grundlegende Prinzip bei der Versorgung	entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimentelles Vorgehen sinnvoller ist (B4, UF2, E1),	Medien zur Information über prinzipielle Verfahren zur Erzeugung, Verteilung und	Leiterschaukelversuch evtl. auch im Hinblick auf die Registrierung einer gedämpften mechanischen Schwingung auswertbar,
	identifizieren Induktionsvorgänge aufgrund der zeitlichen Änderung der magnetischen Feldgröße <i>B</i> in Anwendungs- und Alltagssituationen (E1, E6, UF4),		

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
	wählen begründet mathematische Werkzeuge zur Darstellung und Auswertung von Messwerten im Bereich der Elektrik (auch computer-gestützte graphische Darstellungen, Linearisierungsverfahren, Kurvenanpassungen), wenden diese an und bewerten die Güte der Messergebnisse (E5, B4), ermitteln die in magnetischen Feldern gespeicherte Energie (Spule) (UF2), bestimmen die Richtungen von Induktionsströmen mithilfe der Lenz'schen Regel (UF2, UF4, E6), begründen die Lenz'sche Regel mithilfe des Energieund des Wechselwirkungskonzeptes (E6, K4),	Modellversuch zu einer "Überlandleitung" (aus CrNi-Draht) mit zwei "Trafo-Stationen", zur Untersuchung der Energieverluste bei unterschiedlich hohen Spannungen, Versuch (qualitativ und quantitativ) zur Demonstration der Selbstinduktion (registrierende Messung und Vergleich der Ein- und Ausschaltströme in parallelen Stromkreisen mit rein ohmscher bzw. mit induktiver Last), Versuche zur Demonstration der Wirkung von Wirbelströmen, diverse "Ringversuche"	Deduktive Herleitung des Terms für die Selbstinduktionsspannung einer langen Spule (ausgehend vom Induktionsgesetz), Interpretation des Vorzeichens mit Hilfe der Lenz'schen Regel Definition der Induktivität, messtechnische Erfassung und computerbasierte Auswertung von Ein- und Ausschaltvorgängen bei Spulen deduktive Herleitung der im magnetischen Feld einer Spule gespeicherten magnetischen Energie
22 Ustd.	Summe		I

Kontext: Physikalische Grundlagen der drahtlosen Nachrichtenübermittlung

Leitfrage: Wie können Nachrichten ohne Materietransport übermittelt werden?

Inhaltliche Schwerpunkte: Elektromagnetische Schwingungen und Wellen

Kompetenzschwerpunkte: Schülerinnen und Schüler können

- (UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,
- (UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,
- (E4) Experimente mit komplexen Versuchsplänen und Versuchsaufbauten, auch historisch bedeutsame Experimente, mit Bezug auf ihre Zielsetzungen erläutern und diese zielbezogen unter Beachtung fachlicher Qualitätskriterien durchführen,
- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,
- (B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,
- (B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Der elektromagnetische Schwingkreis – das Basiselement der Nachrichtentechnik: Elektromagnetische Schwingungen im RLC-Kreis, Energieumwandlungs prozesse im RLC- Kreis (12 Ustd.)	erläutern die Erzeugung elektromagnetischer Schwingungen, erstellen aussagekräftige Diagramme und werten diese aus (E2, E4, E5, B1), treffen im Bereich Elektrik Entscheidungen für die Auswahl von Messgeräten (Empfindlichkeit, Genauigkeit, Auflösung und Messrate) im Hinblick auf eine vorgegebene Problemstellung (B1), erläutern qualitativ die bei einer ungedämpften elektromagnetischen Schwingung in der Spule und am Kondensator ablaufenden physikalischen Prozesse (UF1, UF2), beschreiben den Schwingvorgang im RLC-Kreis qualitativ als Energieumwandlungsprozess und benennen wesentliche Ursachen für die Dämpfung (UF1, UF2, E5),	MW-Radio aus Aufbauteilen der Elektriksammlung mit der Möglichkeit, die modulierte Trägerschwingung (z.B. oszilloskopisch) zu registrieren, einfache Resonanzversuche (auch aus der Mechanik / Akustik),	Zur Einbindung der Inhalte in den Kontext wird zunächst ein Mittelwellenradio aus Aufbauteilen der Elektriksammlung vorgestellt. Der Schwingkreis als zentrale Funktionseinheit des MW-Radios: Es kann leicht gezeigt werden, dass durch Veränderung von L bzw. C der Schwingkreis so "abgestimmt" werden kann, dass (z.B. oszilloskopisch) eine modulierte Trägerschwingung registriert werden kann, also der Schwingkreis "von außen" angeregt wird. Die Analogie zu mechanischen Resonanzversuchen wird aufgezeigt.
	wählen begründet mathematische Werkzeuge zur Darstellung und Auswertung von Messwerten im Bereich der Elektrik (auch computer-gestützte graphische Darstellungen, Linearisierungsverfahren, Kurvenanpassungen), wenden diese an und bewerten die Güte der Messergebnisse (E5, B4), entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimentelles Vorgehen sinnvoller ist (B4, UF2, E1),	RLC - Serienschwingkreis insbesondere mit registrierenden Messverfahren und computergestützten Auswerteverfahren, ggf. Meißner- oder Dreipunkt-Rückkopplungsschaltung zur Erzeugung / Demonstration entdämpfter elektromagnetischer Schwingungen	Die zentrale Funktionseinheit "Schwingkreis" wird genauer untersucht. Spannungen und Ströme im RCL – Kreis werden zeitaufgelöst registriert, die Diagramme sind Grundlage für die qualitative Beschreibung der Vorgänge in Spule und Kondensator. Quantitativ wird nur die ungedämpfte Schwingung beschrieben (inkl. der Herleitung der Thomsonformel).

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
	wählen Definitionsgleichungen zusammengesetzter physikalischer Größen sowie physikalische Gesetze problembezogen aus (UF2), leiten physikalische Gesetze aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2).		Die Möglichkeiten zur mathematischen Beschreibung gedämpfter Schwingungen sowie Möglichkeiten der Entdämpfung / Rückkopplung können kurz und rein qualitativ angesprochen werden.
Materiefreie Übertragung von Information und Energie: Entstehung und Ausbreitung elektromagnetischer Wellen, Energietransport und Informationsübertragung durch elektromagnetische Wellen, (16 Ustd.)	beschreiben den Hertz'schen Dipol als einen (offenen) Schwingkreis (UF1, UF2, E6), erläutern qualitativ die Entstehung eines elektrischen bzw. magnetischen Wirbelfelds bei B- bzw. E-Feldänderung und die Ausbreitung einer elektromagnetischen Welle (UF1, UF4, E6), beschreiben qualitativ die lineare Ausbreitung harmonischer Wellen als räumlich und zeitlich periodischen Vorgang (UF1, E6), erläutern anhand schematischer Darstellungen Grundzüge der Nutzung elektromagnetischer Trägerwellen zur Übertragung von Informationen (K2, K3, E6). ermitteln auf der Grundlage von Brechungs-, Beugungs- und Interferenzerscheinungen (mit Lichtund Mikrowellen) die Wellenlängen und die Lichtgeschwindigkeit (E2, E4, E5). beschreiben die Phänomene Reflexion, Brechung, Beugung und Interferenz im Wellenmodell und begründen sie qualitativ mithilfe des Huygens'schen Prinzips (UF1, E6). erläutern konstruktive und destruktive Interferenz sowie die entsprechenden Bedingungen mithilfe geeigneter Darstellungen (K3, UF1),	L-C-Kreis, der sich mit einem magnetischen Wechselfeld über eine "Antenne" zu Schwingungen anregen lässt, dm-Wellen-Sender mit Zubehör (Empfängerdipol, Feldindikatorlampe), Visuelle Medien zur Veranschaulichung der zeitlichen Änderung der E- und B-Felder beim Hertz'schen Dipol, entsprechende Computersimulationen, Ringentladungsröhre (zur Vertiefung der elektromagnetischen Induktion), visuelle Medien zur magneto-elektrischen Induktion, Visuelle Medien zur Veranschaulichung der Ausbreitung einer elektromagnetischen Welle, entsprechende Computersimulationen, Versuche mit dem dm-Wellen-Sender (s.o.),	Erinnerung an die Anregung des MW-Radio-Schwingkreises durch "Radiowellen" zur Motivation der Erforschung sogenannter elektromagnetischer Wellen, Das Phänomen der elektromagnetische Welle, ihre Erzeugung und Ausbreitung werden erarbeitet. Übergang vom Schwingkreis zum Hertz'schen Dipol durch Verkleinerung von L und C, Überlegungen zum "Ausbreitungsmechanismus" elektromagnetischer Wellen: Induktion findet auch ohne Leiter ("Induktionsschleife") statt! (Z.B.) Versuch zur Demonstration des Magnetfeldes um stromdurchflossene Leiter, über die ein Kondensator aufgeladen wird. Auch im Bereich zwischen den Kondensatorplatten existiert ein magnetisches Wirbelfeld.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
	entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimentelles Vorgehen sinnvoller ist (B4, UF2, E1), leiten physikalische Gesetze aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2), beschreiben die Interferenz an Doppelspalt und Gitter im Wellenmodell und leiten die entsprechenden Terme für die Lage der jeweiligen Maxima n-ter Ordnung her (E6, UF1, UF2), wählen Definitionsgleichungen zusammengesetzter physikalischer Größen sowie physikalische Gesetze problembezogen aus (UF2), erstellen, bei Variation mehrerer Parameter, Tabellen und Diagramme zur Darstellung von Messwerten (K1, K3, UF3).	Visuelle Medien zur Veranschaulichung der Ausbreitung einer linearen (harmonischen) Welle, auch Wellenmaschine zur Erinnerung an mechanische Wellen, entsprechende Computersimulationen, Wellenwanne Mikrowellensender / -empfänger mit Gerätesatz für Beugungs-, Brechungs- und Interferenzexperimente, Interferenz-, Beugungs- und Brechungsexperimente mit (Laser-) Licht an Doppelspalt und Gitter (quantitativ) — sowie z.B. an Kanten, dünnen Schichten, (qualitativ)	Beugungs-, Brechungs- und Interferenzerscheinungen zum Nachweis des Wellencharakters elektromagnetischer Wellen,
28 Ustd.	Summe		

Inhaltsfeld: Quantenphysik (LK)

Kontext: Erforschung des Photons

Leitfrage: Besteht Licht doch aus Teilchen?

Inhaltliche Schwerpunkte: Licht und Elektronen als Quantenobjekte, Welle-Teilchen-Dualismus, Quantenphysik und klassische Physik

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

(E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.

Inhalt (Ustd. à 45 min)	Kompetenzen	Experiment / Medium	Kommentar
(USIG. a 45 IIIII)	Die Schülerinnen und Schüler		
Lichtelektrischer Effekt (1 Ustd.)	diskutieren und begründen das Versagen der klassischen Modelle bei der Deutung quantenphysikalischer Prozesse (K4, E6) legen am Beispiel des Photoeffekts und seiner Deutung dar, dass neue physikalische Experimente und Phänomene zur Veränderung des physikalischen Weltbildes bzw. zur Erweiterung oder Neubegründung physikalischer Theorien und Modelle führen können (E7),	Entladung einer positiv bzw. negativ geladenen (frisch geschmirgelten) Zinkplatte mithilfe des Lichts einer Hg-Dampf-Lampe (ohne und mit UV-absorbierender Glasscheibe)	Qualitative Demonstration des Photoeffekts

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Teilcheneigenschaft en von Photonen Planck'sches Wirkungsquantum (7 Ustd.)	erläutern die qualitativen Vorhersagen der klassischen Elektrodynamik zur Energie von Photoelektronen (bezogen auf die Frequenz und Intensität des Lichts) (UF2, E3), erläutern den Widerspruch der experimentellen Befunde zum Photoeffekt zur klassischen Physik und nutzen zur Erklärung die Einstein'sche Lichtquantenhypothese (E6, E1), diskutieren das Auftreten eines Paradigmenwechsels in der Physik am Beispiel der quantenmechanischen Beschreibung von Licht und Elektronen im Vergleich zur Beschreibung mit klassischen Modellen (B2, E7), beschreiben und erläutern Aufbau und Funktionsweise von komplexen Versuchsaufbauten (u.a. zur h-Bestimmung und zur Elektronenbeugung) (K3, K2), ermitteln aus den experimentellen Daten eines Versuchs zum Photoeffekt das Planck'sche Wirkungsquantum (E5, E6),	1. Versuch zur h-Bestimmung: Gegenspannungsmethode (Hg- Linien mit Cs-Diode) 2. Versuch zur h-Bestimmung: Mit Simulationsprogramm (in häuslicher Arbeit)	Spannungsbestimmung mithilfe Kondensatoraufladung erwähnen Wenn genügend Zeit zur Verfügung steht, kann an dieser Stelle auch der Compton-Effekt behandelt werden: Bedeutung der Anwendbarkeit der (mechanischen) Stoßgesetze hinsichtlich der Zuordnung eines Impulses für Photonen Keine detaillierte (vollständig relativistische) Rechnung im Unterricht notwendig, Rechnung ggf. als Referat vorstellen lassen
10 Ustd.	Summe		

Kontext: Röntgenstrahlung, Erforschung des Photons

Leitfrage: Was ist Röntgenstrahlung?

Inhaltliche Schwerpunkte: Licht und Elektronen als Quantenobjekte **Kompetenzschwerpunkte:** Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Röntgenröhre Röntgenspektrum (2 Ustd.)	beschreiben den Aufbau einer Röntgenröhre (UF1),	Röntgenröhre der Schul- röntgeneinrichtung Sollte keine Röntgenröhre zur Verfügung stehen, kann mit einem interaktiven Bildschirmexperiment (IBE) gearbeitet werden (z.B. http://www.mackspace.de/unterri cht/simulationen_physik/quanten physik/sv/roentgen.php oder http://www.uni- due.de/physik/ap/iabe/roentgen b10/roentgen_b10_uebersicht.ht ml)	Die Behandlung der Röntgenstrahlung erscheint an dieser Stelle als "Einschub" in die Reihe zur Quantenphysik sinnvoll, obwohl sie auch zu anderen Sachbereichen Querverbindungen hat und dort durchgeführt werden könnte (z.B. "Physik der Atomhülle") Zu diesem Zeitpunkt müssen kurze Sachinformationen zum Aufbau der Atomhülle und den Energiezuständen der Hüllelektronen gegeben (recherchiert) werden. Das IBE sollte für die häusliche Arbeit genutzt werden.
Bragg'sche Reflexionsbedingung (2 Ustd.)	erläutern die Bragg-Reflexion an einem Einkristall und leiten die Bragg'sche Reflexionsbedingung her (E6),	Aufnahme eines Röntgen- spektrums (Winkel-Inten- sitätsdiagramm vs. Wellen- längen-Intensitätsdiagramm)	Die Bragg'sche Reflexionsbedingung basiert auf Welleninterpretation, die Registrierung der Röntgenstrahlung mithilfe des Detektors hat den Teilchenaspekt im Vordergrund
Planck'sches Wirkungsquantum (1 Ustd.)	deuten die Entstehung der kurzwelligen Röntgenstrahlung als Umkehrung des Photoeffekts (E6),		Eine zweite Bestimmungsmethode für das Planck'sche Wirkungsquantum

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Strukturanalyse mithilfe der Drehkristallmethode Strukturanalyse nach Debye-Scherrer (2 Ustd.)			Schülerreferate mit Präsentationen zur Debye-Scherrer-Methode
Röntgenröhre in Medizin und Technik (2 Ustd.)	führen Recherchen zu komplexeren Fragestellungen der Quantenphysik durch und präsentieren die Ergebnisse (K2, K3),	Film / Video / Foto Schülervorträge auf fachlich angemessenem Niveau (mit adäquaten fachsprachlichen Formulierungen)	Schülerreferate mit Präsentationen anhand Literatur- und Internetrecherchen Ggf. Exkursion zum Röntgenmuseum in Lennep Ggf. Exkursion zur radiologischen Abteilung des Krankenhauses (die aber auch in Rahmen der Kernphysik (s. dort: "Biologische Wirkung ionisierender Strahlung") durchgeführt werden kann)
9 Ustd.	Summe		ı

Kontext: Erforschung des Elektrons

Leitfrage: Kann das Verhalten von Elektronen und Photo-nen durch ein gemeinsames Modell beschrieben werden?

Inhaltliche Schwerpunkte: Welle-Teilchen-Dualismus

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Wellencharakter von Elektronen (2 Ustd.)	interpretieren experimentelle Beobachtungen an der Elektronenbeugungsröhre mit den Welleneigenschaften von Elektronen (E1, E5, E6),	Qualitative Demonstrationen mit der Elektronenbeugungsröhre Qualitative Demonstrationen mithilfe RCL (Uni Kaiserslautern: http://rcl-munich.informatik.unibw-muenchen.de/)	Hinweise auf erlaubte nichtrelativistische Betrachtung (bei der verwendeten Elektronen- beugungsröhre der Schule)
Streuung und Beugung von Elektronen De Broglie-Hypothese	beschreiben und erläutern Aufbau und Funktionsweise von komplexen Versuchsaufbauten (u.a. zur h-Bestimmung und zur Elektronenbeugung) (K3, K2),	Quantitative Messung mit der Elektronenbeugungsröhre	Herausstellen der Bedeutung der Bragg'schen Reflexionsbedingung für (Röntgen-) Photonen wie für Elektronen mit Blick auf den Wellenaspekt von Quantenobjekten
(4 Ustd.)	erklären die de Broglie-Hypothese am Beispiel von Elektronen (UF1),		Dabei Betonung der herausragenden Bedeutung der de Broglie-Gleichung für die quantitative Beschreibung der (lichtschnellen und nicht lichtschneller) Quantenobjekte
6 Ustd.	Summe		-

Kontext: Die Welt kleinster Dimensionen – Mikroobjekte und Quantentheorie

Leitfrage: Was ist anders im Mikrokosmos?

Inhaltliche Schwerpunkte: Welle-Teilchen-Dualismus und Wahrscheinlichkeitsinterpretation, Quantenphysik und klassische Physik

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
linearer Potentialtopf Energiewerte im line- aren Potentialtopf	deuten das Quadrat der Wellenfunktion qualitativ als Maß für die Aufenthaltswahrscheinlichkeit von Elektronen (UF1, UF4),		Auf die Anwendbarkeit des Potentialtopf- Modells bei Farbstoffmolekülen wird hingewiesen.
(4 Ustd.)	ermitteln die Wellenlänge und die Energiewerte von im linearen Potentialtopf gebundenen Elektronen (UF2, E6).		Die Anwendbarkeit des (mechanischen) Modells der stehenden Welle kann insofern bestätigt werden, als dass die für die stehenden Wellen sich ergebende DGI mit derjenigen der (zeitunabhängigen) Schrödinger-DGI strukturell übereinstimmt. Ein Ausblick auf die Schrödinger-Gleichung genügt.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Wellenfunktion und Aufenthalts-	erläutern die Aufhebung des Welle-Teilchen-Dualismus durch die Wahrscheinlichkeitsinterpretation (UF1, UF4),	Demonstration des Durchgangs eines einzelnen Quantenobjekts durch einen Doppelspalt mithilfe eines Simulationsprogramms und mithilfe von Videos	
wahrscheinlichkeit (4 Ustd.)	erläutern die Bedeutung von Gedankenexperimenten und Simulationsprogrammen zur Erkenntnisgewinnung bei der Untersuchung von Quantenobjekten (E6, E7).		
	erläutern bei Quantenobjekten das Auftreten oder Verschwinden eines Interferenzmusters mit dem Begriff der Komplementarität (UF1, E3),		
	diskutieren das Auftreten eines Paradigmenwechsels in der Physik am Beispiel der quantenmechanischen Beschreibung von Licht und Elektronen im Vergleich zur Beschreibung mit klassischen Modellen (B2, E7),		
	stellen anhand geeigneter Phänomene dar, wann Licht durch ein Wellenmodell bzw. ein Teilchenmodell beschrieben werden kann (UF1, K3, B1),		
Heisenberg´sche Unschärferelation (2 Ustd.)	erläutern die Aussagen und die Konsequenzen der Heisenberg´schen Unschärferelation (Ort-Impuls, Energie- Zeit) an Beispielen (UF1, K3),		Die Heisenberg'sche Unschärferelation kann (aus fachlicher Sicht) plausibel gemacht werden aufgrund des sich aus der
	bewerten den Einfluss der Quantenphysik im Hinblick auf Veränderungen des Weltbildes und auf Grundannahmen zur physikalischen Erkenntnis (B4, E7).		Interferenzbedingung ergebenden Querimpulses eines Quantenobjekts, wenn dieses einen Spalt passiert.
10 Ustd.	Summe		

Inhaltsfeld: Atom-, Kern- und Elementarteilchenphysik (LK)

Kontext: Geschichte der Atommodelle, Lichtquellen und ihr Licht

Leitfrage: Wie gewinnt man Informationen zum Aufbau der Materie?

Inhaltliche Schwerpunkte: Atomaufbau

Kompetenzschwerpunkte: Schülerinnen und Schüler können

- (UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,
- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Atomaufbau: Kern-Hülle-Modell (2 Ustd.)	geben wesentliche Schritte in der historischen Entwicklung der Atommodelle bis hin zum Kern-Hülle-Modell wieder (UF1),	Recherche in Literatur und Internet	Diverse Atommodelle (Antike bis Anfang 20. Jhd.)
		Rutherford'scher Streuversuch	Per Arbeitsblatt oder Applet (z.B http://www.schulphysik.de/java/physlet/applets /rutherford.html)
Energiequantelung der Hüllelektronen (3 Ustd.)	erklären Linienspektren in Emission und Absorption sowie den Franck-Hertz-Versuch mit der Energiequantelung in der Atomhülle (E5),	Linienspektren, Franck-Hertz- Versuch	Linienspektren deuten auf diskrete Energien hin
Linienspektren (3 Ustd.)	stellen die Bedeutung des Franck-Hertz-Versuchs und der Experimente zu Linienspektren in Bezug auf die historische Bedeutung des Bohr'schen Atommodells dar (E7).	Durchstrahlung einer Na-Flamme mit Na- und Hg-Licht (Schattenbildung), Linienspektren von H	Demonstrationsversuch, Arbeitsblatt
Bohr'sche Postulate (2 Ustd.)	formulieren geeignete Kriterien zur Beurteilung des Bohr'schen Atommodells aus der Perspektive der klassischen und der Quantenphysik (B1, B4),	Literatur, Arbeitsblatt	Berechnung der Energieniveaus, Bohr'scher Radius
10 Ustd.	Summe		,

Kontext: Physik in der Medizin (Bildgebende Verfahren, Radiologie)

Leitfrage: Wie nutzt man Strahlung in der Medizin?

Inhaltliche Schwerpunkte: Ionisierende Strahlung, Radioaktiver Zerfall **Kompetenzschwerpunkte:** Schülerinnen und Schüler können

(UF3) physikalische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Ionisierende Strahlung:	benennen Geiger-Müller-Zählrohr und Halbleiterdetektor als experimentelle Nachweismöglichkeiten für ionisierende Strahlung	Geiger-Müller-Zählrohr, Arbeitsblatt	Ggf. Schülermessungen mit Zählrohren (Alltagsgegenstände, Nulleffekt , Präparate etc.)
Detektoren	und unterscheiden diese hinsichtlich ihrer Möglichkeiten zur Messung von Energien (E6),	Nebelkammer	Demonstration der Nebelkammer, ggf. Schülerbausatz
(3 Ustd.)			Material zu Halbleiterdetektoren
Strahlungsarten	erklären die Ablenkbarkeit von ionisierenden Strahlen in elektrischen und magnetischen Feldern sowie die	Absorption von α-, β-, γ-Strahlung	Ggf. Absorption und Ablenkung in Schülerexperimenten
(5 Ustd.)	Ionisierungsfähigkeit und Durchdringungsfähigkeit mit ihren Eigenschaften (UF3),	Ablenkung von β-Strahlen im Magnetfeld	Ochdierexperimenten
	erklären die Entstehung des Bremsspektrums und des charakteristischen Spektrums der Röntgenstrahlung (UF1),	Literatur (zur Röntgen- , Neutronen- und Schwerionenstrahlung)	
	benennen Geiger-Müller-Zählrohr und Halbleiterdetektor als experimentelle Nachweismöglichkeiten für ionisierende Strahlung und unterscheiden diese hinsichtlich ihrer Möglichkeiten zur Messung von Energien (E6),	G,	
	erläutern das Absorptionsgesetz für Gamma- Strahlung, auch für verschiedene Energien (UF3),		

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Dosimetrie (2 Ustd.)	erläutern in allgemein verständlicher Form bedeutsame Größen der Dosimetrie (Aktivität, Energie- und Äquivalentdosis) auch hinsichtlich der Vorschriften zum Strahlenschutz (K3),	Video zur Dosimetrie Auswertung von Berichten über Unfälle im kerntechnischen Bereich	
Bildgebende Verfahren (4 Ustd.)	stellen die physikalischen Grundlagen von Röntgenaufnahmen und Szintigrammen als bildgebende Verfahren dar (UF4), beurteilen Nutzen und Risiken ionisierender Strahlung unter verschiedenen Aspekten (B4),	Schülervorträge auf fachlich angemessenem Niveau (mit adäquaten fachsprachlichen Formulierungen) Ggf. Exkursion zur radiologischen Abteilung des Krankenhauses	Nutzung von Strahlung zur Diagnose und zur Therapie bei Krankheiten des Menschen (von Lebewesen) sowie zur Kontrolle bei technischen Anlagen
14 Ustd.	Summe		

Kontext: (Erdgeschichtliche) Altersbestimmungen

Leitfrage: Wie funktioniert die 14C-Methode? Inhaltliche Schwerpunkte: Radioaktiver Zerfall

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Radioaktiver Zerfall: Kernkräfte (1 Ustd.)	benennen Protonen und Neutronen als Kernbausteine, identifizieren Isotope und erläutern den Aufbau einer Nuklidkarte (UF1),	Ausschnitt aus Nuklidkarte	Aufbauend auf Physik- und Chemieunterreicht der S I

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Zerfallsprozesse	identifizieren natürliche Zerfallsreihen sowie künstlich herbeigeführte Kernumwandlungsprozesse mithilfe	Elektronische Nuklidkarte	Umgang mit einer Nuklidkarte
(7 Ustd.)	der Nuklidkarte (UF2),		
	entwickeln Experimente zur Bestimmung der Halbwertszeit radioaktiver Substanzen (E4, E5),	Radon-Messung im Schulkeller (Zentralabitur 2008)	Siehe http://www.physik- box.de/radon/radonseite.html
			Ggf. Auswertung mit Tabellenkalkulation durch Schüler
	nutzen Hilfsmittel, um bei radioaktiven Zerfällen den funktionalen Zusammenhang zwischen Zeit und Abnahme der Stoffmenge sowie der Aktivität radioaktiver Substanzen zu ermitteln (K3),	Tabellenkalkulation	Linearisierung, Quotientenmethode, Halbwertszeitabschätzung, ggf. logarithmische Auftragung
	leiten das Gesetz für den radioaktiven Zerfall einschließlich eines Terms für die Halbwertszeit her (E6),	Ggf. CAS	Ansatz analog zur quantitativen Beschreibung von Kondensatorentladungen
Altersbestimmung	bestimmen mithilfe des Zerfallsgesetzes das Alter von Materialien mit der C14-Methode (UF2),	Arbeitsblatt	Ggf. Uran-Blei-Datierung
(2 Ustd.)			
10 Ustd.	Summe		

Kontext: Energiegewinnung durch nukleare Prozesse

Leitfrage: Wie funktioniert ein Kernkraftwerk?

Inhaltliche Schwerpunkte: Kernspaltung und Kernfusion, Ionisierende Strahlung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Kernspaltung und Kernfusion:	bewerten den Massendefekt hinsichtlich seiner Bedeutung für die Gewinnung von Energie (B1),	Video zu Kernwaffenexplosion	Z.B. YouTube
Massendefekt, Äquivalenz von Masse und Energie, Bindungsenergie	bewerten an ausgewählten Beispielen Rollen und Beiträge von Physikerinnen und Physikern zu Erkenntnissen in der Kern- und Elementarteilchenphysik (B1),		
(2 Ustd.)			
Kettenreaktion (2 Ustd.)	erläutern die Entstehung einer Kettenreaktion als relevantes Merkmal für einen selbstablaufenden Prozess im Nuklearbereich (E6),	Mausefallenmodell, Video, Applet	Videos zum Mausefallenmodell sind im Netz (z.B. bei YouTube) verfügbar
	beurteilen Nutzen und Risiken von Kernspaltung und Kernfusion anhand verschiedener Kriterien (B4),		
Kernspaltung, Kernfusion	beschreiben Kernspaltung und Kernfusion unter Berücksichtigung von Bindungsenergien (quantitativ) und Kernkräften (qualitativ) (UF4),	Diagramm <i>B/A</i> gegen <i>A</i> , Tabellenwerk, ggf. Applet	Z.B. http://www.leifiphysik.de
(5 Ustd.)			
	hinterfragen Darstellungen in Medien hinsichtlich technischer und sicherheitsrelevanter Aspekte der Energiegewinnung durch Spaltung und Fusion (B3, K4).	Recherche in Literatur und Internet Schülerdiskussion, ggf. Fish Bowl, Amerikanische Debatte, Pro- Kontra-Diskussion	Siehe http://www.sn.schule.de/~sud/methodenkompendium/module/2/1.htm

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
9 Ustd.	Summe		

Kontext: Forschung am CERN und DESY – Elementarteilchen und ihre fundamentalen Wechselwirkungen

Leitfrage: Was sind die kleinsten Bausteine der Materie?

Inhaltliche Schwerpunkte: Elementarteilchen und ihre Wechselwirkungen

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF3) physikalische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren,

(K2) zu physikalischen Fragestellungen relevante Informationen und Daten in verschiedenen Quellen, auch in ausgewählten wissenschaftlichen Publikationen, recherchieren, auswerten und vergleichend beurteilen.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Kernbausteine und Elementarteilchen (4 Ustd.)	systematisieren mithilfe des heutigen Standardmodells den Aufbau der Kernbausteine und erklären mit ihm Phänomene der Kernphysik (UF3),	Existenz von Quarks (Video) Internet (CERN / DESY)	Da in der Schule kaum Experimente zum Thema "Elementarteilchenphysik" vorhanden sind, sollen besonders Rechercheaufgaben und Präsentationen im Unterricht genutzt werden. Internet: http://project-physicsteaching/german/ Ggf. Schülerreferate
Kernkräfte Austauschteilchen der fundamentalen Wechselwirkungen (4 Ustd.)	vergleichen das Modell der Austauschteilchen im Bereich der Elementarteilchen mit dem Modell des Feldes (Vermittlung, Stärke und Reichweite der Wechselwirkungskräfte) (E6). erklären an Beispielen Teilchenumwandlungen im Standardmodell mithilfe der Heisenberg'schen Unschärferelation und der Energie-Masse-Äquivalenz (UF1).	Darstellung der Wechselwirkung mit Feynman-Graphen (anhand von Literatur)	Besonderer Hinweis auf andere Sichtweise der "Kraftübertragung": Feldbegriff vs. Austauschteilchen Die Bedeutung der Gleichung $E=mc^2$ (den SuS bekannt aus Relativitätstheorie) in Verbindung mit der Heisenberg'schen Unschärferelation in der Form $\Delta E \cdot \Delta t \geq h$ (den SuS bekannt aus Elementen der Quantenphysik) für die Möglichkeit des kurzzeitigen Entstehens von Austauschteilchen ist herauszustellen.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Aktuelle Forschung und offene Fragen der Elementarteilchenphy sik (z.B. Higgs-Teilchen, Dunkle Materie, Dunkle Energie, Asymmetrie zwischen Materie und Antimaterie,) (3 Ustd.)	recherchieren in Fachzeitschriften, Zeitungsartikeln bzw. Veröffentlichungen von Forschungseinrichtungen zu ausgewählten aktuellen Entwicklungen in der Elementarteilchenphysik (K2),	Literatur und Recherche im Internet "CERN-Rap": http://www.youtube.com/watch?v=7VshToyoGl8	Hier muss fortlaufend berücksichtigt werden, welches der aktuelle Stand der Forschung in der Elementarteilchenphysik ist (derzeit: Higgs-Teilchen, Dunkle Materie, Dunkle Energie, Asymmetrie zwischen Materie und Antimaterie,) Der CERN-Rap gibt eine für Schülerinnen und Schüler motivierend dargestellte Übersicht über die aktuelle Forschung im Bereich der Elementarteilchenphysik
11 Ustd.	Summe		

Hinweis: In diesem Bereich sind i. d. R. keine bzw. nur in Ausnahmefällen Realexperimente für Schulen möglich. Es sollte daher insbesondere die Möglichkeit genutzt werden, auf geeignete Internetmaterialien zurück zu greifen. Nachfolgend sind einige geeignet erscheinende Internetguellen aufgelistet. Internet-Materialien (Letzter Aufruf Jan 2012):

- CERN-Film zum Standardmodell (sehr übersichtlich):
 - http://project-physicsteaching.web.cern.ch/project-physicsteaching/german/kurzvideos/film6.wmv
 - ➤ Weiter Filme zum Standardmodell im netz verfügbar (z.B. bei YouTube)
- Einführung in Teilchenphysik (DESY):
 - http://teilchenphysik.desy.de/
 - http://kworkquark.desy.de/1/index.html
- Übungen und Erklärungen zu Ereignisidentifikation (umfangreiche CERN-Internetseite zum Analysieren von (Original-) Eventdisplays) am Computer:
 - http://kjende.web.cern.ch/kjende/de/wpath.htm
- Ausgezeichnete Unterrichtsmaterialien des CERN zur Teilchenphysik:
 - http://project-physicsteaching.web.cern.ch/project-physicsteaching/german/
- Übungen zur Teilchenphysik in der Realität:
 - http://physicsmasterclasses.org/neu/

- http://www.teilchenwelt.de/
- Naturphänomene und Anregungen für den Physikunterricht:
 - http://www.solstice.de
- ... und vieles mehr:
 - > http://www.teilchenwelt.de/material/materialien-zur-teilchenphysik/

2.2 Grundsätze der fachmethodischen und fachdidaktischen Arbeit im Physikunterricht der gymnasialen Oberstufe

In Absprache mit der Lehrerkonferenz sowie unter Berücksichtigung des Schulprogramms hat die Fachkonferenz Physik die folgenden fachmethodischen und fachdidaktischen Grundsätze beschlossen. Die Grundsätze 1 bis 14 beziehen sich auf fachübergreifende Aspekte, die Grundsätze 15 bis 26 sind fachspezifisch angelegt.

Überfachliche Grundsätze:

- 1.) Geeignete Problemstellungen zeichnen die Ziele des Unterrichts vor und bestimmen die Struktur der Lernprozesse.
- 2.) Inhalt und Anforderungsniveau des Unterrichts entsprechen dem Leistungsvermögen der Schülerinnen und Schüler.
- 3.) Die Unterrichtsgestaltung ist auf die Ziele und Inhalte abgestimmt.
- 4.) Medien und Arbeitsmittel sind lernernah gewählt.
- 5.) Die Schülerinnen und Schüler erreichen einen Lernzuwachs.
- 6.) Der Unterricht fördert und fordert eine aktive Teilnahme der Lernenden.
- 7.) Der Unterricht fördert die Zusammenarbeit zwischen den Lernenden und bietet ihnen Möglichkeiten zu eigenen Lösungen.
- 8.) Der Unterricht berücksichtigt die individuellen Lernwege der einzelnen Schülerinnen und Schüler.
- 9.) Die Lernenden erhalten Gelegenheit zu selbstständiger Arbeit und werden dabei unterstützt.
- 10.) Der Unterricht fördert strukturierte und funktionale Einzel-, Partnerbzw. Gruppenarbeit sowie Arbeit in kooperativen Lernformen.
- 11.) Der Unterricht fördert strukturierte und funktionale Arbeit im Plenum.
- 12.) Die Lernumgebung ist vorbereitet; der Ordnungsrahmen wird eingehalten.
- 13.) Die Lehr- und Lernzeit wird intensiv für Unterrichtszwecke genutzt.
- 14.) Es herrscht ein positives pädagogisches Klima im Unterricht.

Fachliche Grundsätze:

- 15.) Der Physikunterricht ist problemorientiert und Kontexten ausgerichtet.
- 16.) Der Physikunterricht ist kognitiv aktivierend und verständnisfördernd.
- 17.) Der Physikunterricht unterstützt durch seine experimentelle Ausrichtung Lernprozesse bei Schülerinnen und Schülern.
- 18.) Der Physikunterricht knüpft an die Vorerfahrungen und das Vorwissen der Lernenden an.
- 19.) Der Physikunterricht stärkt über entsprechende Arbeitsformen kommunikative Kompetenzen.

- 20.) Der Physikunterricht bietet nach experimentellen oder deduktiven Erarbeitungsphasen immer auch Phasen der Reflexion, in denen der Prozess der Erkenntnisgewinnung bewusst gemacht wird.
- 21.) Der Physikunterricht fördert das Einbringen individueller Lösungsideen und den Umgang mit unterschiedlichen Ansätzen. Dazu gehört auch eine positive Fehlerkultur.
- 22.) Im Physikunterricht wird auf eine angemessene Fachsprache und die Kenntnis grundlegender Formeln geachtet. Schülerinnen und Schüler regelmäßiger, sorgfältiger und selbstständiger Dokumentation der erarbeiteten Unterrichtsinhalte angehalten.
- 23.) Der Physikunterricht ist in seinen Anforderungen und im Hinblick auf die zu erreichenden Kompetenzen und deren Teilziele für die Schülerinnen und Schüler transparent.
- 24.) Der Physikunterricht bietet immer wieder auch Phasen der Übung und des Transfers auf neue Aufgaben und Problemstellungen.
 25.) Der Physikunterricht bietet die Gelegenheit zum regelmäßigen wiederholenden Üben sowie zu selbstständigem Aufarbeiten von Unterrichtsinhalten.
- 26.) Im Physikunterricht wird ein GTR oder ein CAS verwendet. Die Messwertauswertung kann auf diese Weise oder per PC erfolgen.

2.3 Grundsätze der Leistungsrückmeldung

Leistungsbewertung

und

Hinweis:

Um sowohl Transparenz bei Bewertungen als auch in der Vergleichbarkeit von Leistungen zu gewährleisten, sollen durch die Fachgruppe Vereinbarungen zu Bewertungskriterien und deren Gewichtung getroffen werden.

Auf der Grundlage von § 48 SchulG, § 13 APO-GOSt sowie Kapitel 3 des Kernlehrplans Physik hat die Fachkonferenz im Einklang mit dem entsprechenden schulbezogenen Konzept die nachfolgenden Grundsätze zur Leistungsbewertung und Leistungsrückmeldung beschlossen. Die nachfolgenden Absprachen stellen die Minimalanforderungen an das lerngruppenübergreifende gemeinsame Handeln der Fachgruppenmitglieder dar. Bezogen auf die einzelne Lerngruppe kommen ergänzend weitere der in den Folgeabschnitten genannten Instrumente der Leistungsüberprüfung zum Einsatz.

Überprüfungsformen

In Kapitel 3 des KLP Physik Lehrplan werden Überprüfungsformen angegeben, die Möglichkeiten bieten, Leistungen im Bereich der "sonstigen Mitarbeit" oder den Klausuren zu überprüfen. Um abzusichern, dass am Ende der Qualifikationsphase von den Schülerinnen und Schülern alle geforderten Kompetenzen erreicht werden, sind alle Überprüfungsformen notwendig. Besonderes Gewicht wird im Grundkurs auf experimentelle Aufgaben und Aufgaben zur Datenanalyse gelegt.

Lern- und Leistungssituationen

In **Lernsituationen** ist das Ziel der Kompetenzerwerb. Fehler und Umwege dienen den Schülerinnen und Schülern als Erkenntnismittel, den Lehrkräften geben sie Hinweise für die weitere Unterrichtsplanung. Das Erkennen von Fehlern und der konstruktiv-produktive Umgang mit ihnen sind ein wesentlicher Teil des Lernprozesses.

Bei **Leistungs- und Überprüfungssituationen** steht dagegen der Nachweis der Verfügbarkeit der erwarteten bzw. erworbenen Kompetenzen im Vordergrund.

Beurteilungsbereich Sonstige Mitarbeit

Folgende Aspekte können bei der Leistungsbewertung der sonstigen Mitarbeit eine Rolle spielen (die Liste ist nicht abschließend):

- Sicherheit, Eigenständigkeit und Kreativität beim Anwenden fachspezifischer Methoden und Arbeitsweisen
- Verständlichkeit und Präzision beim zusammenfassenden Darstellen und Erläutern von Lösungen einer Einzel-, Partner-, Gruppenarbeit oder einer anderen Sozialform sowie konstruktive Mitarbeit bei dieser Arbeit
- Klarheit und Richtigkeit beim Veranschaulichen, Zusammenfassen und Beschreiben physikalischer Sachverhalte
- sichere Verfügbarkeit physikalischen Grundwissens (z. B. physikalische Größen, deren Einheiten, Formeln, fachmethodische Verfahren)
- situationsgerechtes Anwenden geübter Fertigkeiten
- angemessenes Verwenden der physikalischen Fachsprache
- konstruktives Umgehen mit Fehlern
- fachlich sinnvoller, sicherheitsbewusster und zielgerichteter Umgang mit Experimentalmedien
- fachlich sinnvoller und zielgerichteter Umgang mit Modellen, Hilfsmitteln und Simulationen
- zielgerichtetes Beschaffen von Informationen
- Erstellen von nutzbaren Unterrichtsdokumentationen, ggf. Portfolio
- Klarheit, Strukturiertheit, Fokussierung, Zielbezogenheit und Adressatengerechtigkeit von Präsentationen, auch mediengestützt
- sachgerechte Kommunikationsfähigkeit in Unterrichtsgesprächen und Kleingruppenarbeiten
- Einbringen kreativer Ideen
- fachliche Richtigkeit bei kurzen, auf die Inhalte weniger vorangegangener Stunden beschränkten schriftlichen Überprüfungen

Beurteilungsbereich Klausuren

Verbindliche Absprache:

Die Aufgaben für Klausuren in parallelen Kursen werden im Vorfeld abgesprochen und nach Möglichkeit gemeinsam gestellt.

Für Aufgabenstellungen mit experimentellem Anteil gelten die Regelungen, die in Kapitel 3 des KLP formuliert sind.

Dauer und Anzahl richten sich nach den Angaben der APO-GOSt. Einführungsphase:

1 Klausur im ersten Halbjahr (90 Minuten), im zweiten Halbjahr werden 2 Klausuren (je 90 Minuten) geschrieben.

Qualifikationsphase 1:

2 Klausuren pro Halbjahr (je 135 Minuten im GK und je 180 Minuten im LK), wobei in einem Fach die letzte Klausur im 2. Halbjahr durch 1 Facharbeit ersetzt werden kann bzw. muss.

Qualifikationsphase 2.1:

2 Klausuren (je 135 Minuten im GK und je 180 Minuten im LK) Qualifikationsphase 2.2:

1 Klausur, die – was den formalen Rahmen angeht – unter Abiturbedingungen geschrieben wird.

In der Qualifikationsphase werden die Notenpunkte durch äquidistante Unterteilung der Notenbereiche (mit Ausnahme des Bereichs ungenügend) erreicht.

Die Leistungsbewertung in den **Klausuren** wird mit Blick auf die schriftliche Abiturprüfung mit Hilfe eines Kriterienrasters zu den Teilleistungen durchgeführt. Dieses Kriterienraster wird den korrigierten Klausuren beigefügt und den Schülerinnen und Schüler auf diese Weise transparent gemacht.

Die Zuordnung der Hilfspunkte zu den Notenstufen orientiert sich in der Qualifikationsphase am Zuordnungsschema des Zentralabiturs. Die Note ausreichend soll bei Erreichen von ca. 50 % der Hilfspunkte erteilt werden. Von dem Zuordnungsschema kann abgewichen werden, wenn sich z.B. besonders originelle Teillösungen nicht durch Hilfspunkte gemäß den Kriterien des Erwartungshorizonts abbilden lassen oder eine Abwertung wegen besonders schwacher Darstellung angemessen erscheint.

Grundsätze der Leistungsrückmeldung und Beratung

Für Präsentationen, Arbeitsprotokolle, Dokumentationen und andere **Lernprodukte der sonstigen Mitarbeit** erfolgt eine Leistungsrückmeldung, bei der inhalts- und darstellungsbezogene Kriterien angesprochen werden. Hier werden zentrale Stärken als auch Optimierungsperspektiven für jede Schülerin bzw. jeden Schüler hervorgehoben.

Die Leistungsrückmeldungen bezogen auf die mündliche Mitarbeit erfolgen auf Nachfrage der Schülerinnen und Schüler außerhalb der Unterrichtszeit, spätestens aber Form in von mündlichem Quartalsfeedback oder Eltern-/Schülersprechtagen. Auch hier erfolgt eine individuelle Beratung im Hinblick auf Stärken und Verbesserungsperspektiven.

Mündliche Abiturprüfungen

Auch für das mündliche Abitur (im 4. Fach oder bei Abweichungs- bzw. Bestehensprüfungen im 1. bis 3. Fach) wird ein Kriterienraster für den ersten und zweiten Prüfungsteil vorgelegt, aus dem auch deutlich wird, wann eine gute oder ausreichende Leistung erreicht wird.

2.4 Lehr- und Lernmittel

Für den Physikunterricht in der Sekundarstufe II ist an der Schule derzeit kein Schulbuch eingeführt.

Die Schülerinnen und Schüler arbeiten die im Unterricht behandelten Inhalte in häuslicher Arbeit nach.

Zu ihrer Unterstützung erhalten sie dazu:

- a) eine Link-Liste "guter" Adressen, die auf der ersten Fachkonferenz im Schuljahr von der Fachkonferenz aktualisiert und zur Verfügung gestellt wird,
- b) ein Unterrichtsprotokoll, das für jede Stunde von jeweils einer Mitschülerin bzw. einem Mitschüler angefertigt und dem Kurs zur Verfügung gestellt wird.

Unterstützende Materialien sind auch im *Lehrplannavigator* des NRW-Bildungsportals angegeben. Verweise darauf finden sich über Links in den HTML-Fassungen des Kernlehrplans und des Musters für einen Schulinternen Lehrplan. Den *Lehrplannavigator* findet man für das Fach Physik unter:

http://www.standardsicherung.schulministerium.nrw.de/lehrplaene/lehrplannavigator-s-ii/gymnasiale-oberstufe/physik/

3 Entscheidungen zu fach- und unterrichtsübergreifenden Fragen

Die Fachkonferenz Physik hat sich im Rahmen des Schulprogramms für folgende zentrale Schwerpunkte entschieden:

Zusammenarbeit mit anderen Fächern

Durch die unterschiedliche Belegung von Fächern können Schülerinnen und Schüler Aspekte aus anderen Kursen mit in den Physikunterricht einfließen lassen. Es wird Wert darauf gelegt, dass in bestimmten Fragestellungen die Expertise einzelner Schülerinnen und Schüler gesucht wird, die aus einem von ihnen belegten Fach genauere Kenntnisse mitbringen und den Unterricht dadurch bereichern.

Projektwoche in der EF

In der letzten Schulwoche vor den Sommerferien wird in der EF eine fachübergreifende Projektwoche zu einem bestimmten Thema durchgeführt. Die Fachkonferenz Physik bietet in diesem Zusammenhang mindestens ein Projekt für die EF an (ggfs. auch fachübergreifend). Der Fachbereich Physik übernimmt zusammen mit dem Fachbereich Informatik neben den jeweiligen fachbezogenen Projekten auch die technische Leitung und die mediale Unterstützung der anderen Fachbereiche. Die Betreuung wird von freiwilligen Schülerinnen und Schülern der Physik- und Informatikkurse anstatt eines Projektes durchgeführt.

Vorbereitung auf die Erstellung der Facharbeit

Um eine einheitliche Grundlage für die Erstellung und Bewertung der Facharbeiten in der Jahrgangsstufe Q1 zu gewährleisten, findet im Vorfeld des Bearbeitungszeitraums ein fachübergreifender Projekttag statt, gefolgt von einem Besuch einer Universitätsbibliothek. Die AG Facharbeit hat schulinterne Richtlinien für Erstellung einer Facharbeit angefertigt, die die unterschiedlichen Arbeitsweisen in den wissenschaftlichen Fachbereichen berücksichtigen. Im Verlauf des Projekttages werden den Schülerinnen und Schülern in einer zentralen Veranstaltung und in Gruppen diese schulinternen Richtlinien vermittelt.

Exkursionen

In der gymnasialen Oberstufe sollen in Absprache mit der Stufenleitung nach Möglichkeit unterrichtsbegleitende Exkursionen durchgeführt

werden. Diese sollen im Unterricht vor- bzw. nachbereitet werden. Die Fachkonferenz hält folgende Exkursionen für sinnvoll:

- EF 1: Besuch eines Science Centers
- EF 2: Besuch eines Planetariums
- Q1.1: Besuch eines Industrieunternehmens
- Q1.2: Besuch eines Schülerlabors
- Q2.1: Besuch einer Physikveranstaltung einer Universität am Tag der offenen Tür

4 Qualitätssicherung und Evaluation

Evaluation des schulinternen Curriculums

Das schulinterne Curriculum stellt keine starre Größe dar, sondern ist als "lebendes Dokument" zu betrachten. Dementsprechend werden die Inhalte stetig überprüft, um ggf. Modifikationen vornehmen zu können. Die Fachkonferenz trägt durch diesen Prozess zur Qualitätsentwicklung und damit zur Qualitätssicherung des Faches Physik bei.

Die Evaluation erfolgt jährlich. Zu Schuljahresbeginn werden die Erfahrungen des vergangenen Schuljahres in der Fachschaft gesammelt, bewertet und eventuell notwendige Konsequenzen und Handlungsschwerpunkte formuliert.

Fachgruppenarbeit

Die folgende Checkliste dient dazu, den Ist-Zustand bzw. auch Handlungsbedarf in der fachlichen Arbeit festzustellen und zu dokumentieren, Beschlüsse der Fachkonferenz zur Fachgruppenarbeit in übersichtlicher Form festzuhalten sowie die Durchführung der Beschlüsse zu kontrollieren und zu reflektieren. Die Liste wird regelmäßig überabeitet und angepasst. Sie dient auch dazu, Handlungsschwerpunkte für die Fachgruppe zu identifizieren und abzusprechen.

Bedingungen und Planungen der Fachgruppenarbeit		Ist-Zustand Auffälligkeiten	Änderungen/ Konsequenzen/ Perspektivplanung	Wer (Verantwortlich)	Bis wann (Zeitrahmen)
Funktionen					
Fachvorsitz					
Stellvertretung					
Sammlungsleitung					
Strahlenschutzbeauftragungen			Fristen beachten!		
Sonstige Funktionen (im Rahmen der schulprogrammatischen fächerübergreifenden Schwerpunkte)					
Ressourcen					
personell	Fachlehrkräfte				
	fachfremd				
	Lerngruppen				
	Lerngruppengröße				
räumlich	Fachräume				
	Bibliothek				
	Computerraum				
	Raum für				
	Fachteamarbeit				
	Sammlungsraum				
materiell/	Lehrwerke				
sachlich	Fachzeitschriften				

	Ausstattung mit			
	Demonstrationsexperim			
	enten			
	Ausstattung mit			
	Schülerexperimenten			
zeitlich	Abstände			
	Fachteamarbeit			
	Dauer Fachteamarbeit			
Unterric	ntsvorhaben			
	sbewertung/			
Einzelinstrumente				
Klausuren				
Facharbe	eiten			
Kurswah	ilen			
Grundkur	rse			
Leistungskurse				
Projektkurse				
Leistungsbewertung/Grundsätze				
sonstige	Mitarbeit			
		•		

Arbeitsschwerpunkt(e) SE		
fachintern		
- kurzfristig (Halbjahr)		
- mittelfristig (Schuljahr)		
- langfristig		
fachübergreifend		
- kurzfristig		
- mittelfristig		
- langfristig		
Fortbildung		
Fachspezifischer Bedarf		
- kurzfristig		
- mittelfristig		
- langfristig		
Fachübergreifender Bedarf		
- kurzfristig		
- mittelfristig		
- langfristig		